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ABSTRACT

Autonomous Underwater Vehicles (AUV) are being

considered by the Navy for performing a variety of missions.

During the research and development stage of the AUV project

at the Naval Postgraduate School, a navigator is needed to

provide vehicle position estimates for short-range missions

performed in a test pool environment. This navigator should

operate with inexpensive sensors and not require excessive

digital processor time. This thesis presents the results of

the design of a model-based navigator. The navigator uses

nonlinear vehicle models and Extended Kalman filter theory.

Simulation studies for both a 12,000 pound vehicle and the

435 pound testbed vehicle, designed and built at the School

(NPS AUV II), are presented. Results of using data recorded

from the gyroscopes and depth cell installed in the NPS AUV

II vehicle in lieu of simulated data are also discussed.

These results show that the navigator meets the goals of low

cost and low processor burden for short-range missions.
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I. INTRODUCTION

A. GENERAL

The United States Navy now uses Unmanned Underwater

Vehicles (UUVs) for performing a variety of missions [Ref.

1:pp. 60-88]. Currently, these vehicles are tethered and

are controlled by data links to human operators. Their

small size and corresponding ability to go where manned

vehicles cannot go are their primary advantages. These

advantages also apply to Autonomous Underwater Vehicles

(AUVs). An Autonomous Underwater Vehicle is a type of UUV

that is not limited by the need for local human control.

The freedom from requiring an external control interface

theoretically allows this type of vehicle to perform a

greater range of missions than its tethered counterpart

[Ref. 2:pp. 571-575].

While autonomy has clear advantages, it does require a

sophisticated level of on board processing ability. The

organization for the control of the vehicle can be broken

into a hierarchy of levels in which the vehicle senses,

thinks and acts [Ref. 3:pp. 1-3]. At any of the levels the

vehicle requires an interface to its real world environment

in order to function properly.
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In addition to the obvious need for information

concerning the physical surroundings of the vehicle, such

as obstacles, data needed at any of these levels will likely

include the current vehicle location. Additionally, the

vehicle will need to have its present state, in terms of

velocities, angle rates, and attitude available for guidance

and control. An on board navigator is designed to supply

this information.

B. AIM OF THE STUDY

This thesis is concerned with the navigation problem of

an AUV. As a result of the method chosen for addressing

this problem, this thesis is also concerned with the

guidance and control functions of the vehicle since these

functions are assumed to require signals fed back by the

navigator.

Due to the unavailability of radio navigation aids (such

as LORAN, OMEGA, or GPS) in the underwater environment, the

navigation system of the AUV is primarily based on inertial

measurements. For reasons of covertness, the vehicle is not

expected to broadcast its position, so it cannot rely on

navigational processing by a mothership and thus the

navigator must be self-contained.

Generally, inertial navigation systems (INS) are

complicated and historically have relied on expensive

gyroscopically stabilized platforms, known as gimballed

2



systems. A triad of accelerometers is placed on the stable

platform to measure rectilinear accelerations in the

platform, i.e. inertial, coordinates [Ref. 4:pp. 85-86].

Generally, the platform could be stabilized to represent any

coordinate system. Operating inertial navigation systems

have been built in which the platforms are stable relative

to the stars, to a non-rotating earth coordinate system, and

to a locally level coordinate system, among others. In any

case, the accelerations are measured in the inertial

coordinate system, via the stabilized platform. These

measurements are then properly integrated to obtain a

position estimate. [Ref. 4:pp. 193-223]

Until the last 20 years, limitations in computer speed

and physical size, as well as computer memory cost have

prevented designers from using strapped-down systems. A

strapped-down INS is similar to a gimballed INS as described

above except that the inertial reference coordinate system

is stored in computer memory rather in a stable platform,

and the accelerometer triad is rigidly attached to the

vehicle. The motion of the vehicle relative to the chosen

inertial coordinate system is determined by combining

measurements from rate gyroscopes and accelerometers. The

angular rate information from the gyroscopes is transformed

and integrated to obtain the vehicle's attitude in the

chosen coordinate system and the accelerations are

integrated and transformed using this attitude information

3



to give vehicle position in the inertial frame (Ref. 5:p.

38].

Until microprocessors were developed, the amount of

computing power required to perform these operations was

beyond the capability of any on board computer. However,

with the advent of VLSI CMOS technology, processors are

small enough and memory is inexpensive enough to make the

system feasible and such systems are in use.

For any navigation system to be useful, the accuracy of

the instruments has to be such that the navigator's error is

within the required tolerance of the vehicle which relies on

the navigation system. However, accurate sensors tend to be

large and expensive. It is the aim of this thesis to study

the feasibility of combining measurements from inexpensive

instruments on board an AUV to generate relatively good

position estimates over a short time interval.

To study the feasibility of operating an AUV, the Naval

Postgraduate School has designed and built a testbed AUV,

known as NPS AUV II. It is for this vehicle that this

thesis is designed.

C. METHOD OF APPROACH

This thesis is concerned with the short-range navigation

problem for the NPS testbed AUV. Because this vehicle is

small it cannot carry the stabilized platform required of a

gimballed INS. It must therefore rely on a strapped-down

4



system. Currently however, there is no commercially

available strapped-down system which can be incorporated

into the AUV. It is therefore necessary to design a

specific navigator for the AUV.

Being limited in complexity and cost, the navigator has

to rely on previously purchased and installed instruments.

Also, because the system need only operate over short ranges

the effects of the earth's orbit and rotation can be

neglected. This approximation also has the effect of

simplifying the navigator.

The approach taken in this thesis to solve the

navigation problem is to use a nonlinear dynamic model of

the submerged vehicle to filter gyroscope and accelerometer

readings to estimate the vehicle's position as well as the

vehicle's attitude, velocity and rotational rates. This

approach is diagramed in Figure 1.1.

The thesis is presented in five parts. Chapter II

discusses some background and the theory behind the

navigator design. Chapter III discusses the details of the

design and the techniques used in simulation. In Chapter IV

we present the results obtained from the simulation study,

while Chapter V shows the results obtained using recorded

sensor readings taken from the Naval Postgraduate School's

vehicle. Finally, Chapter VI summarizes the the results of

this research and contains conclusions and recommendations

for application and further study.

5
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II. LINEARIZATION AND EXTENDED KALMAN FILTERING

A. GENERAL

This chapter discusses the general theory used to design

the AUV navigators. A brief introductory presentation is

given for each of the concepts used in the development of

this work. None of the concepts is presented in an

exhaustive manner and derivations are not provided. A prior

understanding of these concepts is assumed; therefore, only

a brief review is presented for clarity. For more detailed

explanations and developments, the reader is directed to the

References listed herein.

B. LINEAR MODELING

In control theory we encounter the problem of

representing a dynamic physical system mathematically. A

common way of doing this is to use a state-space model by

breaking the Nth- order differential equation representing

the system into N, coupled, first-order differential

equations. These equations can be easily represented using

matrix algebra and matrix notation as long as the system

being modeled is linear. A linear system exhibits the

properties of both homogeneity and superposition [Ref. 6:pp.

14-25].

7



A linear, time-invariant (LTI), state-space

representation of a continuous-time system is given by

±(t) = A(t) +B.U(t) (2.1)

where x is the system state vector, u is the input vector

and A and B are the state transition and input matrices

respectively.

In the time-invariant case, both x and u are functions

of time, while A and B are not. If A and B were functions

of time, then the system would be classified as time-

varying.

Generally, this description is supplemented with a

measurement equation which represents the output of the

system as a function of the states and the inputs. Again,

if the system is linear, matrix notation may be used, and

the measurement is given by

X(t) = Cz(t) +Du(t) (2.2)

where y is the system output. Generally, there is more than

one output so y is a vector.

8



A system can be represented in discrete time with

analogous equations. These are:

x(k+l) = Ox(k) +ru(k) (2.3)

y(k) = CX(k) +Du (k) (2.4)

where k is the time index.

Knowledge of the system state at all times is often

required to control the system. However, it may not be

feasible to measure all of the states of a system because

systems can be complex and putting instrumentation in place

to measure the states may not be possible. In such cases, a

filter known as an observer is used. [Ref. 6:p. 259]

An observer is a dynamic subsystem based on a model of

the system being observed which recursively predicts the

system state. The error between the output of the observer

and the output of the system is driven to zero by correcting

the state prediction with the output error signal (Ref 6:p.

262]. This relationship is given by

2(k+l) = 02(k) +Pj(k) +G(Y(k) -Ck(k)) (2.5)

where G is the observer feedback gain, and I is the

observer, or estimated state.

The result is that an estimate of the system state is

made available without directly measuring all the states.

Because this thesis is written using discrete-time models

9



and filters, this equation is given in its discrete-time

form.

In the presence of noise, which may include unknown

disturbances perturbing the system dynamics, known as plant

noise, or noise in the instruments which measure the output

of the system, known as measurement noise, the observer

feedback gain becomes an important factor in minimizing the

sensitivity of the overall system to the noise disturbances.

The Kalman filter is an observer which provides optimal

state estimates for linear systems in the presence of noise.

The Kalman filter is based on the assumption that the plant

noise and the measurement noise are independent, white,

Gaussian processes, so the system equations become

(k+l) = f (k) +rlu(k) + 2 i(k)
(2.6)

y(k) = Cx(k) Du(k) +Y(k)

where w is the plant noise vector, and v is the measurement

noise vector.

The Kalman filter gain matrix is time-varying and is

related to the plant noise and the measurement noise through

their respective covariance matrices, Q and R, by

P(k+l[k) = *P(k)*'+r 2 Qg

G(k+1) = P(k+l1k)CICP(k+l1k)c'+] -  (2.7)

P(k+lIk+l) = [Z-G(k+l)qP(k+lIk)

where P is the variance matrix of the estimated state. (Ref.

6:pp. 411-417)

10



With these gain equations, the filter equations are:

2(k+jk) = 02(kk) +ru(k)

= CR(k+lk) (2.8)

2(k+llk+l) = 2(k+lk) +G(k+l)[.Y(k+l) -2(k+l)].

This is known as the predictor-corrector form of the

Kalman filter in which the next state is predicted using the

state space model and the measurement is used to correct the

prediction. [Ref. 7:p. 3]

The Q matrix describes the unknown noise that disturbs

the system, while the r2 matrix describes the way this noise

enters the system. If Q is diagonal then the disturbances

are assumed to be independent, otherwise they are correlated

as described by the off-diagonal terms in Q. If Q has large

values, then large deviations from the systems's predicted

state will be expected and more reliance will be given to

the measurements for those states which correspond to the

terms in Q which are large.

The R matrix describes the unknown noise that disturbs

the sensors which return the measurements. The Kalman

filter considers the measurement noise to enter all the

individual measurements so there is no D2 matrix. As with

the measurement noise covariance matrix, if R is large, then

the measurements are expected to deviate more from the

states being measured, and the Kalman filter will rely more

11



on the predicted state than on the measurements. [Ref. 8:pp.

127-132]

The initial P matrix affects the reliance the Kalman

filter has on the initial conditions. Large values in P(O)

mean that the filter will not rely on the initial

conditions, but will instead give more weight to the

measurements. This allows the estimated state to change

rapidly as the filter goes through its transient stage. In

steady state, however, P(k) has no effect on the Kalman

filter because it approaches a constant value that is

dependent only on the system and the noise covariance

matrices.

Because the gain equations do not depend directly on

time or on the state trajectory in a LTI system, the gain

can be calculated a priori and recalled from memory as

needed. There is no need for real-time gain computation.

Moreover, the gain matrix approaches a steady-state value

which is determined by the system equations and the Q and R

matrices through the associated Riccati equation. In many

cases, using the steady- state gain matrix instead of the

time-varying gain matrix gives satisfactory results in a

reduced-complexity algorithm which does not take into

account prior knowledge of the initial conditions. [Ref.

8:pp. 238-244]

12



C. LINEARIZATION

Thus far the discussion has been limited to linear

systems; however, many systems in which the control engineer

is interested are nonlinear. Nonlinear system models are

more general than linear models and can contain a wide of

variety of nonlinear characteristics for which limited

analytic tools exist. In general, nonlinear systems do not

exhibit the properties of homogeneity or superposition, and

may include transcendental, trigonometric or other nonlinear

functions [Ref. 9:pp. 351-353]. Such is the case with the

model chosen for this thesis which will be discussed in

Chapter III.

A method for working with nonlinear systems is to

linearize them using a truncated Taylor series

approximation. The Taylor series approximates a function

around a given point as an infinite sum of weighted,

analytically determined, partial derivatives. A general

Taylor series around the point x0 is given by

f = dnf(X) (X-Xo) (2.9)

A truncated Taylor series only uses a few of the terms

of the sum. In order to realize a linear function from the

Taylor series expansion of a nonlinear one, the series must

be truncated at the n = 1 term. This method is general and

can be applied to any nonlinear system, and it will be valid

13



in a region surrounding the linearization point. [Ref. 10:p.

3]

For the case of a discrete-time dynamic system

represented in state space, which, in general, is not a

function of a single variable, but is rather a function of

time, the input vector, and the past state vector, the

Taylor series is defined over the partial derivatives of

each of the independent variables. In the case of a time-

invariant system, the series is expanded about an operating

point described by the state, X., and a corresponding input,

Y0" A nonlinear state space equation can then be

approximated as

af(xo,. o) af(Xo,L o)

f £(2°'.U°)0+ 0U (A-x°) +  0 (U. -.u0) (2.10)

where f is the nonlinear system function. This notation

implies that the partial derivatives are constant terms,

calculated analytically and evaluated at No, and Y0"

The state, A0, and input, yo, around which the system

is linearized, might not be constant. Most of the time, the

system is linearized around the trajectories Xo(t), and

uo(t). Because

90 (t) = f (co (t), UO (t)) (2.11)

14



Equation 2.10 can be rewritten as

af (2C0, 0) af (Z0,a 0)
Ai(t) = AX(t) + 3U Au) 0 (2.12)

where

Ax(t) = x(t) -ZX (t)

AU(t) =UW(t)-1 0 (t)

so that the partial derivatives which form the right-hand

side of Equation 2.12 are analogous to the A and B matrices

of Equation 2.1.

Just as a nonlinear system equation can be expanded

using a Taylor series, a nonlinear measurement equation can

also be expanded and linearized. The formulation for this

expansion is similar to the above expression except that the

nonlinear measurement equation is used to generate the

analogs of the C and D matrices.

D. EXTENDED KALMAN FILTER

The Kalman filter is derived for linear systems with

linear measurement equations; however, using the

linearizatioa, techniques described in the last section, this

filter can find application to general, nonlinear, systems.

This is known as the Extended Kalman Filter. The Extended

Kalman filter is suboptimal and may suffer convergence and

15



stability problems, but it has been shown to be useful in a

variety of applications. (Ref 8:p. 189]

The form of the Extended Kalman Filter equations are

essentially similar to those of the linear Kalman filter.

The nonlinear model is used to predict the state and the

nonlinear measurement is used to correct the prediction.

The most significant difference between the Extended Kalman

Filter and the linear Kalman filter is in the gain

equations. Rather than using the state transition, the

input, and the measurement matrices to calculate the gain,

the Extended Kalman filter uses the linearized model of the

nonlinear system. It uses the partial derivatives of the

nonlinear state equations and the nonlinear measurement

equations. These partials are evaluated at each estimated

state. As such, the gain, K, cannot be computed in advance

because it is dependent on both the state trajectory and the

input history.

Calculating partial derivatives of the nonlinear system

and measurement equations for each measurement as well as

calculating the Kalman filter gain matrix is a computational

burden. In order to overcome this problem, it may be

possible to use gain matrices calculated in advance by

choosing discrete points in the system's state space about

which to linearize the nonlinear system. Practically, only

some of the system states are varied while others are kept

constant. Using the chosen points, several linear
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approximations to the nonlinear system are calculated and

then used to calculate the steady-state Kalman filter gain

matrix associated with those particular points. Once the

gains are calculated, the Extended Kalman filter is

implemented by determining which of the chosen linearization

points is closest to the current estimated state and the

corresponding gain matrix is used in the Extended Kalman

filter equation given as the last of Equations 2.8. [Ref

8:p. 189]

In using the Extended Kalman filter, the nonlinearities

are modeled as plant noise. This means that the r2 matrix

is usually the identity matrix. Furthermore, because the

nonlinear effects are not included in the gain equations,

the Extended Kalman filter can be very sensitive to the Q

and R matrices. Choosing improper values can make an

Extended Kalman filter unstable. The values chosen for

these matrices should not necessarily correspond to the

actual noise expected in the system or in the measurements,

but. rather they must made large enough to provide a robust

prediction in spite of the nonlinear effects.
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III. INTEGRATED NAVIGATOR DESIGN

A. GENERAL

The design techniques used in this thesis are presented

in this chapter. A brief description of the models used in

the designs is given, as well as a summary of changes made

to the models to facilitate their use in the navigator. An

explanation of the measurements used to drive the navigator

is also given. Finally, a description of the simulation

environment, including an introduction to the use of MATLAB

MEX files, as well as an outline of the navigator's program

structure, is presented.

B. USE OF NONLINEAR MEASUREMENT MODELS

One of goals of this study has been the integration of

nonlinear measurement models with the Extended Kalman filter

navigator. The nonlinear measurements provide additional

information about the vehicle's state which improve the

accuracy of the filter.

In order to obtain more information about the vehicle's

velocity, depth rate is measured. Depth rate is related to

both the pitch angle of the vehicle and its velocity as

illustrated in Figure 3.1. This diagram shows only two

dimensions for clarity; however, a discussion of the full,

three-dimensional depth-rate equation follows in Section D.
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Figure 3.1 Simplified diagram of depth rate and velocity
relationship

The other nonlinear measurement model used in the

navigator is for the accelerometers. Because accelerometers

cannot distinguish between accelerations and gravitational

forces, they can be used to measure gravity. In this case,

they are used to provide a nonlinear measurement of the

gravity vector in the vehicle coordinate system. This can

be interpreted as a nonlinear measurement of the vehicle's

attitude in earth coordinates. A simplified diagram of this

concept is shown in Figure 3.2. A more detailed description

of this measurement is given in Section D.
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Figure 3.2 Simplified diagram of accelerometer measurement

C. VEHICLE MODELS

1. The Vehicles

Two vehicles are studied in this thesis. One is a

17.4 foot long, 12,000 pound Swimmer Delivery Vehicle (SDV),

and the other is the 7 foot long, 435 pound testbed AUV

designed and built at the Naval Postgraduate School known as

the NPS AUV II. The SDV model was used in the preliminary

stages of this work because an accurate model of the NPS AUV

II was not yet available.

The two vehicles are geometrically similar but there

are minor differences. They both have a rectangular cross

section rather than the usual body of revolution more

typical of submarine vehicles. The SDV differs from the NPS

AUV II in that it has a deep keel in which a third propeller

is housed for surface operation. Although the model has
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provision for this feature, it is not used in the

simulations. The NPS AUV II differs from the SDV in that it

has a bow rudder which increases its maneuverability. This

feature is included in the model and is used in the

simulations.

2. The Models

The models chosen for this work are based on

modified equations of motion for submarine vehicles

developed by Gertler and Hagen [Ref. 11]. As opposed to a

typical inertial navigation system (INS), these models are

representations of the vehicle dynamics rather than models

of the sensors and of coordinate system relationships to

inertial space. As such, no provision is made for the

earth's curvature, its rotation, its orbit around the sun,

or gravitational anomalies. This limits the applicability

of the models to short-range missions.

Both models are 12-state, six-degree-of-freedom,

nonlinear models which are based on three specific force

equations which govern linear accelerations in body

coordinates, three specific torque equations which govern

angular accelerations in body coordinates, and six kinematic

relationships which translate linear and angular velocities

from body fixed to inertial coordinates. The specific

equations of motion are given in the NCSC report by Crane,

Sumney and Smith [Ref. 12]. The two coordinate systems used
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by the models are typical of those used to describe aircraft

motion in that they are both right-handed with the vertical

axis pointing down. In the reference system, down is in the

direction of the gravity vector, and for the body coordinate

system, down is through the bottom of the vehicle. These

systems are shown in Figure 3.3.

JX

W
z

Figure 3.3 Diagram of coordinate systems

a. Vehicle State

As previously stated, these models have a 12-

element state vector given by

S= [u v wp q r X Y Z 40 T. (3.1)

The first three elements of the state vector, u,

v, and w, are the 3 mutually orthogonal velocities in
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vehicle, or body coordinates. They are given in feet per

second.

The next three elements, p, q, and r are the

three angular rates associated with vehicle motion around

the vehicle coordinate axes. They are in units of radians

per second. The directions for these six states are shown

in Figure 3.1.

X, Y and Z are the coordinates of the vehicle's

location in inertial space, and 0, e, and Y are the Euler

angles which describe the vehicle's attitude in inertial

space. 0 is the roll angle; G is the elevation angle; Y is

the azimuth angle.

The transformation from body coordinate system

velocities to inertial coordinate system velocities is given

by

[I [c c' c'ses4-svc$ c'Psec$+s~s4 [

= c c +sOsesV -COs sOs eCj1 (3.2)

where c represents the cosine function and s represents the

sine function. 0, 8, and T are the vehicle Euler angles

described above. This transformation matrix is orthogonal

so its inverse is equal to its transpose. [Ref. 13:p. 115]
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The transformation from body angle rates to Euler

angle rates is given by

[!1 [ tanOsint tanecos. ']q

: coso -sint rj (3.3)

sinO/cosO cosO/cos@.

where the variables are as defined above. [Ref. 14:p. 12]

b. Inputs

The vehicle control inputs for both of the models

are similar. Rudder angle, dive plane angle and engine rpm

are the inputs. Angles are measured in radians. Because

both vehicles have stern dive planes and bow dive planes

which can operate independently, there is a separate input

for each. The NPS AUV II also has bow and stern rudders

which can operate independently so that model has provision

for a separate input for each.

c. Differences in the Models

There are a few other differences between the SDV

model and the NPS AUV II model. The main differences are in

the hydrodynamic coefficients and the mass matrices of the

two models. The hydrodynamic coefficients describe the

effect that the vehicle velocity and angular velocity (in

three-dimensional space) have on the hydrodynamic forces

that act on the vehicle. The mass matrix is a convenient

way to gather terms in the vehicle equations of motion which

multiply linear and angular accelerations so as to
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facilitate a state-space formulation of the model. The mass

matrix is made up of coefficients which describe vehicle's

mass moment of inertia tensor, as well as the coefficients

which describe the coupling between the linear and angular

accelerations and the forces acting on the vehicle. The

coefficients for both vehicles have been previously

determined [Ref. 12][Ref. 15].

The propulsion models are also different. Both

models utilize square-law thrust and drag relationships, as

well as cross flow force and torque calculation. The SDV

model uses a four term Simpson's Rule integration to

calculate these forces. In fact, only two terms are

calculated. One which corresponds to the cross flow force

and torque in the vertical plane, NORPIT, and one which

corresponds to the cross flow force and torque in the

horizontal plane, LATYAW. The NPS AUV II model uses a 15

term trapezoidal numerical integration scheme to calculate

these cross flow forces and torques. This model also

distinguishes between the forces and the torques in that

four separate terms are calculated. The propulsion model

for the AUV is deemed to be the most accurate of the two.

3. Computational Aspects of the Equations

To facilitate their use in the navigator, some minor

changes have been made to both models. The changes were

necessary because of the way the C programming language
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handles floating point numerical operations. Logic

statements have been added to ensure that the tangent and

sine functions return a value of zero when passed a value of

zero. This change makes the C programs behave more like

their corresponding MATLAB functions.

Another change was to take the absolute value of all

floating point numbers prior to performing any square root

operation. This prevents square root domain errors.

D. MEASUREMENTS

In addition to the vehicle model, the simulations use a

nonlinear measurement model. The instruments which are used

to generate the measurements are rate gyroscopes, the depth

cell, a triad of accelerometers and the heading gyroscope.

The depth cell reading is also used to generate a depth-rate

estimate by simple first order difference equation. The

measurements from the rate gyros and the depth cell are

essentially linear functions of the vehicle state; however,

the other measurements are related to the state nonlinearly.

1. Depth Rate

Depth rate is approximated as the difference between

two successive depth measurements divided by the sampling

interval. Analytically, however, depth rate is related to

the vehicle's orientation and its three-dimensional velocity

vector. The equation which describes this relationship is
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one of the nonlinear functions within the vehicle models,

and is given by

= -usinO+vcos~sin4+wcosOcosO (3.4)

which is identical to the bottom equation of Equation 3.2.

By taking the partial derivatives of this function with

respect to the state, the associated portion of C matrix to

be used with the Extended Kalman filter is generated.

2. Accelerometers

The measurement associated with the accelerometers

is also a nonlinear function of the state. The

accelerations of the vehicle fall within the dead zone of

the accelerometers which were purchased for use in the NPS

AUV II, and as such, these accelerometers could not be used

in the normal sense. However, because an accelerometer

cannot distinguish between accelerations and gravitational

forces, the accelerometer triad would give the decomposition

of the gravitational acceleration vector in vehicle

coordinates. So while gravity remains constant, the

accelerometer measurements would change depending on the

attitude of the vehicle. The relationship between the

accelerometer readings and the vehicle orientation is

nonlinear, and is given by
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av = -Rt (3.5)
a. 0

where R is the inverse (transpose) of the transformation

matrix given in Equation 3.2, and g is the magnitude of the

gravitational acceleration.

Additionally, because these accelerometers have a

dead zone, it is likely that there will be times when they

do not generate a signal. This dead zone is an additional

nonlinearity which can be taken into account in the Extended

Kalman filter by setting to zero the row of the linearized C

matrix that is associated with whichever accelerometer is

operating in its dead zone. The model used for the

accelerometer dead zone is given in Figure 3.4.

3. Gyroscopes

While the measurements from the rate gyroscopes are

linear functions of the state vector, that is, they should

be measurements of p, q, and r, it is known that the

gyroscopes installed in the NPS AUV II generate a bias term

that is drifting time. For this reason, the vehicle model

has been augmented to include three more states, namely, the

rate- gyroscope biases. Carried as states, the rate

gyroscope measurement can then be modeled as the vector sum

of the three angular rate vehicle states, p, q, and r, and

their corresponding bias terms. The Extended Kalman filter
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Figure 3.4 Model for accelerometer dead zone

is then able to estimate the bias terms and remove their

effect from the estimation of the vehicle state.

In short-range problems, the heading gyroscope does

not suffer from the bias problems that plague the rate

gyroscopes. It has a clean signal that does not drift with

time, and it has a magnetic flux gate sensor which helps it

to maintain inertial alignment.

The NPS AUV II also has a vertical gyroscope which

measures the vehicle roll and pitch angles which are used in

lieu of the accelerometer measurements described above. The

measurements from this unit suffer from two problems. The

first is quantization noise. The roll measurements are so
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small relative to quantization levels in the analog-to-

digital converter that the signal is lost in quantization

noise. The second problem is with the pitch measurement,

which is known to have a bias. As with the rate gyroscopes,

the Extended Kalman filter for the vehicle can be augmented

to include the pitch measurement bias which is modeled as a

relatively constant value which is affected by a fictitious

noise term.

E. HATLAB MEX FILE GENERATION

The programs developed for this thesis are written for

MATLAB, an interactive application designed to use matrices

as the basic computational entity. The specific version

that is used is AT-MATLAB Version 3.5k for IBM compatible

personal computers.

MATLAB provides an interpretive programming environment

which is easy to use and easy to debug in the form of Script

files. A Script file allows a user to write MATLAB commands

to an ASCII file. When the file is invoked, MATLAB reads

the file and performs the operations listed therein. In

this context, MATLAB functions as an interpreted language.

MATLAB also has facilities for using Functions. A

Function is like a Script file but it contains the reserved

word, Function. A Function is different from a Script file

in that the commands are interpreted, compiled and stored in

RAM, ready for further uses. The advantage of using a
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Function is that once used, the Function will run faster on

future calls than an identical Script file because it is

compiled. [Ref. 16:p. 2-86]

MATLAB also allows the use of specially written FORTRAN

and C programs to be called from within the MATLAB

environment as though they were either MATLAB Script files

or Functions. Files which are written using this feature

are called MEX files. The two largest subroutines written

for this thesis are in the form of MEX files. They were

written in C, and then compiled, and linked with MATLAB

supplied libraries into executable code. This executable

code was then operated on by a MATLAB supplied program to

convert in to a MEX file. The only advantage to using a MEX

file is speed of execution. A MEX file will typically run

25 times faster than its Script or Function file

counterpart. (Ref. 16:p. 1-47]

The procedures for using this feature are contained in

the MATLAB User's Guide. However, what is not explained in

the manual is that the compilation and linking must be done

from within the MEX subdirectory (where MATLAB is the parent

directory). If this is not done, the linker will give

"undefined function" errors for any Structures or Procedures

defined within the MATLAB MEX libraries which are called by

the C program.

There is a significant difference between the way MATLAB

and FORTRAN store two-dimensional arrays and the way that C
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stores them which must be accounted for when using C

language MEX files. Both MATLAB and FORTRAN store arrays in

a column by column format in contiguous long-words of

memory, whereas C uses a row by row scheme. This is not a

difficult problem to overcome, but it forces the C

programmer to either use transposed matrices in his code or

to use a separate conversion routine before passing matrices

into or out of MATLAB. The former approach is more compact

but the latter approach makes the source code more

understandable.

F. PROGRAM STRUCTURE

The programs used in this thesis are listed in Appendix

A and Appendix B. For the SDV, the programs are SIMUL.M,

MODEL.C, MKABMEX.C, GETMEAS.M, and MAKMEAS.M. For the NPS

AUVII, the programs are AUVSIM.M, AUV2.C, AUV2AB.C,

GETMEAS.M, MAKMEAS.M, MAKEK.M, and GETK.M. The names of the

source code files for different versions of the programs are

appended with the version number, for example, SIMUL6.M,

MAKMEAS4.M.

The structure for both sets of programs is the same.

Both SIMUL.M and AUVSIM.M are the main modules of the

navigator. They initialize the filter parameters, the

simulated vehicle state, the Extended Kalman filter state,

the control input, and the A, B and C matrices of the

linearized model. In the case of the versions of AUVSIM.M
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which use data recorded from the actual NPS AUV II vehicle,

the programs read the data file as a standard MATLAB matrix

instead of running a separate vehicle model to generate

simulated measurements.

The main loop in these programs is diagrammed in Figure

3.5. First, the input

command is generated and

formatted. Next, the (Fmat lnptq_

linearized model A, B and IRIealesem

C matrices are
Calculate Kalman Galn~

recalculated around the oLkuplrmanGain9

last estimated state.
Generate Measurements

orThese matrices and the FomatMeasuements

error variance matrix are (Predidehlte

passed to KALM.M which 'Generate Preded Measuments

calculates the next Cdllat adAppty I

Extended Kalman filter

gain matrix, K, using the

formulae described in Figure 3.5 Main loop in navigator

Chapter II. The program

then either calls MODEL.MEX or AUV2.MEX to generate the next

simulated vehicle state. A call is made to GETMEAS.M to

extract the simulated gyroscope and accelerometer readings

from the vehicle state. GETMEAS.M uses the MATLAB RAND

function to simulate noise in the sensor readings by adding

a normally distributed, zero-mean, pseudo-random number to
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the simulated measurement. The variance of this pseudo-

random number is equal to the apparent variance of the

actual sensor signal. If recorded data is used, then a

version of GETMEAS.M is used to format the recorded data for

use by the Extended Kalman filter and noise is not added.

The Extended Kalman filter is implemented in the

predictor-corrector form. Either MODEL.MEX or AUV2.MEX is

used to predict the next vehicle state from the last

estimate and the given inputs. The measurement equation is

applied to this prediction to form the estimated

measurement. This estimate and the actual measurement are

applied to the predicted state as described in the last

chapter to correct prediction. This corrected prediction

becomes the estimated stite for the next iteration of the

filter.

The sequence is somewhat different for that version of

AUVSIM which uses the piecewise constant K matrix. MAKEK.M

is called outside the main loop of the program to calculate

the steady-state K matrices for several different values of

u and e. Inside the loop, GETK.M is used to compare the

current estimates of u and e to the values used to make the

several K matrices and then return the K matrix which

corresponds most closely to the estimated state.
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IV. SIMULATION RESULTS

A. GENERAL

This chapter describes the results of the navigator

simulations for the SDV and the NPS AUV II. Both navigators

were driven by simulated measurements generated by nonlinear

models.

The effectiveness of including a model of the bias in

the rate gyroscopes and the use of accelerometer

measurements to determine vehicle attitude are explored in

this chapter. Also, the feasibility of using depth rate, as

discussed in the Chapter III, to estimate forward speed is

addressed, and the effect of filter parameters on the

estimated vehicle states is discussed.

B. SWIMMER DELIVERY VEHICLE SIMULATION

Figures 4.1 through 4.14 show the simulated vehicle

states and the estimated states, as determined by the

navigator, for the SDV. For the particular simulation run

from which this data is taken, the vehicle was given an

initial forward speed, u, of 0.3 feet per second, a constant

propeller speed of 650 rpm, a constant rudder command of 0.2

radians, and a sinusoidal dive plane command. A sampling

interval of one second has been used. Also, an initial
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pseudo-random Gaussian error vector was added to the initial

vehicle states to simulate an unknown initial condition.

The remainder of this section presents the details of

the simulated responses and attempts to explain the behavior

of the signals.

Figure 4.1 shows the X-Y position of the vehicle and the

navigator. The two trajectories are not coincident

indicating that the navigator does not generate a highly
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Figure 4.1 SDV simulation - X-Y position plot
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accurate position estimate at all times. This is due in

part to the lack of position error feedback which cannot be

accomplished because position is not measured. This error

is also due to the effects of the transients in the Extended

Kalman filter. As shown in Figures 4.2 through 4.4, these

transients affect the velocity estimates from which position

is generated.

The forward speed is estimated accurately after

approximately 40 seconds as shown in Figure 4.2. As

previously mentioned, the estimation error at the beginning
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Figure 4.2 SDV Simulation - Forward velocity
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of the run is due to filter transient effects. The

sinusoidal variation of the speed is due to the drag indu-: d

by the dive plane angle and resulting porpoising maneuver.

This effect is much more pronounced in v and w.

Both v and w exhibit similar transient error periods.

Figure 4.3 shows that the lateral velocity, or side slip, v,

approaches a constant value induced by the rudder command

and resultant turn. The convergence of the filter is faster

for this state than for the forward speed. The dive plane

commands also affect the side slip as evidenced by the
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Figure 4.3 SDV Simulation - Lateral velocity

oscillation about 0.7 feet per second which is caused by the

rolling motion of the vehicle, shown in Figure 4.5.
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The sinusoidal variation in w, shown in Figure 4.4, is

much more pronounced than for either of the other two

velocity terms because the forcing function of the dive

command is in the same plane as w. Like forward speed, the

filter does not converge to the correct value of w as

quickly as it does for lateral velocity. This is due in

part to the large relative error between the vehicle state

0.1

0.05

tu
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-0.15 L , ,, _ _ _ L _ _ I _ _ _ _ _ _ _
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seconds

Figure 4.4 SDV Simulation - Vertical velocity

and the filter state not present in either of the two other

velocity terms. This error also manifests itself in the

pitch and pitch rate estimates. Finally, the mean value is

not zero because the vehicle tends to roll and dive in a turn.
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As mentioned above, the dive commands combine in the

turn to create a varying roll effect. Figure 4.5 shows the

vehicle's roll rate and estimated roll rate, p. The high

frequency oscillations in the first 30 seconds of the

simulation run are caused by the vehicle's response to an

initial roll rate at low forward speed. At low speed, the

0.1
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Figure 4.5 SDV Simulation - Roll rate

hydrodynamic forces on the vehicle are not sufficient to

damp this mode of oscillation. The lower frequency

oscillations are caused by the dive plane commands.

Because all three angular rates are measured, the filter

converges to the proper values more quickly than for the
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velocity terms previously discussed. The measurement noise

is also evident in these three estimated states.

Figure 4.6 shows the vehicle's pitch rate and the

estimated pitch rate, q. The general shape of this plot

corresponds to that of Figure 4.4 in that the magnitude of

the oscillation increases with vehicle forward speed and the

mean value is not zero. The filter transient effect is very

pronounced in the q estimate. The spike occurring at the
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Figure 4.6 SDV Simulation - Pitch rate

one second point is related to the initial estimation error

in body vertical velocity, w.
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In a similar manner, the vehicle's yaw rate and the

estimated yaw rate, r, reflect the estimation errors in v,

as shown in Figure 4.7. Although the rudder command is

constant for this run, the turn rate increases and

approaches a steady-state value because the vehicle speed is

increasing in the beginning of the turn and because the
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Figure 4.7 SDV Simulation - Yaw rate

vehicle has significant rotational inertia in the yaw

direction. The nonlinearities in the model are evidenced by

t.Lis plot in that the sinusoidal dive plane commands do not

produce a strictly sinusoidal change in yaw rate.

The scale in this figure tends to hide the measurement

noise, but examination of the data indicates that some
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portion of the measurement noise is present in the estimate.

As with all the measured states, the sensitivity of the

filter to this noise could be changed by adjusting the R

matrix.

Figure 4.8 shows the vehicle's depth and the estimated

depth. As previously mentioned, the vehicle's unusual shape

causes it to dive in a turn. Because a constant turn is

being simulated, the depth does not approach a steady-state

value. Additionally, while the dive plane commands are

symmetrical, the dive response in the turn is asymmetrical.

36
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The relatively large range on the y-axis of this plot does

not allow the filter transient to be seen, nor does it allow

the difference between the vehicle depth and the estimated

depth to be seen; however, these effects do exist.

The last three vehicle states to be discussed are the

Eulerian attitude angles. As discussed in Chapter III,

these estimates are derived from the nonlinear accelerometer

measurement. The measurement is highly nonlinear, and

therefore can lead to instabilities in the Extended Kalman

filter. By making the corresponding elements of the R

matrix relatively large, 10 (feet/second2)2, the filter is

made more robust to this nonlinearity.

Figure 4.9 shows the vehicle's roll angle and the

estimated roll angle, 0. The mean value of the roll is not

zero because the vehicle rolls in a turn. The horizontal

intervals in the estimated roll angle are caused by the

accelerometer dead zone. As discussed in Chapter III, the

row of the C matrix which corresponds to an accelerometer

estimated to be operating in its dead zone is set to zero so

that the Extended Kalman filter does not expect a

measurement. The graph has discontinuities because the

estimated accelerometer measurements and the simulated

accelerometer measurements do not reach their dead zones

simultaneously.
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Figure 4.9 SDV Simulation - Euler roll angle

The Euler elevation angle (pitch), 0, estimate, shown in

Figure 4.10, exhibits a filter transient response that

combines the effects of both the w and q estimates; however,

the estimate converges well and tracks the vehicle pitch

accurately in spite of the nonlinear accelerometer

measurement associated with this state.

The heading angle, Y is not as sensitive to the

accelerometer measurement, although it is in that

measurement equation, because it is measured directly by the

simulated heading gyroscope. Figure 4.11 shows that the
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Figure 4.10 SDV Simulation - Euler elevation angle

estimate and actual state are virtually indistinguishable.

As with the depth plot, the range of the vertical scale

prevents differences between the vehicle state and the

estimated state from being observed. Because the heading

gyroscope is reliable, the elements of R matrix associated

with 7 were made small so the filter would track the

measurement closely.

Finally, Figures 4.12, 4.13, and 4.14 show the estimated

bias terms for each of the three rate gyroscopes. These

bias terms were simulated by adding a constant term to each

of the rotational rate states before passing them to the

Extended Kalman filter as measurements.
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Figure 4.14 SDV Simulation - Estimated yaw rate gyroscope bias

In all cases, the filter is able to accurately estimate

the simulated gyroscope bias and thus remove its effect from

the measurements.
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C. NPS AUV II SIMULATION

1. Typical Maneuver

Figures 4.15 through 4.28 show the simulated and

estimated states of the NPS AUV II performing a maneuver

similar to that of the SDV described in Section B. As in

the previous section, the vehicle was given a low initial

forward speed, u, of 0.3 feet/second, a constant propeller

speed of 550 rpm, a constant bow and stern rudder command of

0.2 radian and -0.2 radian respectively, a sinusoidal dive

plane command and an initial error between the filter states

and the vehicle states was introduced. A sampling interval

of 0.2 seconds has been used.

The results of this simulation are similar to those

depicted for the SDV in the previous section. Because the

two vehicles are geometrically similar, they share the

common characteristic of diving in a turn. However, because

the NPS AUV II is a much smaller vehicle, its dynamics are

much faster and the Extended Kalman fi.,er responds

differently.

The noise rejection performance of this Extended

Kalman filter is poorer than in the SDV simulation, although

the noise covariance matrices used were the same for both,

and the absolute magnitude of the additive pseudo-random

noise was identical for both. The difference can be
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attributed to the different dynamic behavior exhibited by

the vehicles.

There is one difference in the measurement noise

covariance matrix, R, between the two simulations. The

elements associated with the accelerometer sensitive to

pitch have been increased by a factor of ten to 100

(feet/sec2 )2. If this were not done, the filter would be

not be stable.

Although Figure 4.15 seems to imply that the

navigator for the NPS AUV II is not as accurate as the

navigator for the SDV, the scale is misleading. As with the
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Figure 4.15 NPS AUV II Simulation - X-Y position plot
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SDV, the position error shown here is due to the velocity

errors in the state estimates which are caused by the

transient response of the filter. The transient is induced

in large part by the initial random vehicle state. Although

other transient errors exist, it is the velocity error that

has the most impact on the position estimate. Other

simulation runs have produced more accurate position

estimates, but this run is included because the random

initial estimation error seems to have caused the filter to

perform at its worst.

The random initial error does not appear to have

affected the forward speed estimate, as shown in Figure

4.16. This figure also shows that the forward speed of the

vehicle is not strictly first order as evidenced by the

slight overshoot. This overshoot is attributed to the

relative rotation of the three-dimensional vehicle velocity

vector with respect to the vehicle coordinate system that

occurs when the vehicle turns. Before the vehicle yaws into

a turn all the velocity is along its longitudinal axis. As

it begins to turn this velocity is distributed into the

other velocity component directions, as shown in Figure 4.17

and Figure 4.18, and the forward speed drops. These effects

would not be apparent in a dead-reckoning navigator, but

they are predicted and taken into account by the Extended

Kalman filter. The SDV does not exhibit this behavior

because of its different size and kinetic characteristics.
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Figure 4.16 NPS AUV II Simulation - Forward velocity

The sinusoidal variation in u present in the SDV

simulation is not present in the NPS AUV II simulation

because the vehicles have different hydrodynamic

characteristics.

The lateral velocity, v, shown in Figure 4.17,

approaches a constant value as in the SDV simulation;

however, unlike the SDV, the roll effect is not pronounced

so there is little variation in the lateral velocity once it

reaches steady state. The estimation error seen in the

beginning of this run is induced by the random disturbance

added to the initial vehicle state.
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Figure 4.17 NPS AUV II Simulation - Lateral velocity

The initial error in w does not affect the position

estimate as greatly as u and v do. However, the large

initial estimation error and transient period in w is

related to both vehicle's and the filter's transient

response in pitch rate and pitch angle.

The sinusoidal variation in w, shown in Figure 4.18,

is caused by the dive plane commands which induce a change

in this component of the vehicle velocity as described in

Section B.

The measurement noise rejection performance of the

NPS AUV II navigator is exhibited by Figures 4.19, 4.20, and

4.21, which show the angular rate estimates. As with the
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Figure 4.18 NPS AUV II Simulation - Vertical velocity

SDV, simulated measurements from the rate gyroscopes are

used in the estimation of these states. Compared with the

corresponding figures from Section B, these estimates are

much more affected by measurement noise.

Although the roll rate, shown in Figure 4.19,

exhibits the same high frequency oscillation as in the SDV,

the magnitude of the roll rate induced by the dive commands

is not as large. Moreover, the estimated roll rate does not

converge to the actual value as quickly as for the SDV.

While this is partially caused by the initial estimation

error, it is more closely related to the different dynamic

behavior of the two vehicle models.
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Figure 4.19 NPS AUV II Simulation - Roll rate

As with the roll rate, the pitch rate estimate,

shown in Figure 4.20, exhibits high frequency measurement

noise. The filter's transient response, evident in this

figure, also shows that the initial error in pitch rate is

related to both the initial error in w and in pitch, e, as

previously mentioned.

The transient response of the vehicle is also

evident in this figure. The behavior through the fiz:t 20

seconds of the simulation is due to the random initial

condition of the vehicle causing it to follow a complicated

trajectory which has the result of making the filter less

effective in estimating the states.
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Figure 4.20 NPS AUV II Simulation - Pitch rate

As with the SDV, the NPS AUV II rolls and dives

during the turn; therefore, the average roll rate and pitch

rate shown in the two previous figures are not zero.

The yaw rate of the NPS AUV II, shown in Figure

4.21, differs from the yaw rate of the SDV shown in Section

B in that the coupling between the dive plane commands and

the yaw rate is not evidenced in the response of the AUV II.

The oscillation evident in Figure 4.7 is not present in

Figure 4.21. This is due to the lower cross-coupling

effects between roll and pitch discussed above.

After the initial negative spike, the yaw rate

estimate quickly converges to the actual yaw rate and tracks
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Figure 4.21 NPS AUV II Simulation - Yaw rate

it through its transient period, although it does exhibit

some measurement noise corruption.

While both the SDV and the NPS AUV II dive in the

turn, Figure 4.22 shows that the smaller vehicle does not

exhibit this characteristic to as great a degree as the SDV.

This fact is related to the smaller roll angle experienced

by the vehicle during the turn shown in Figure 4.23 and

evidenced in the roll rate and lateral velocity.

For the depth estimate, the Extended Kalman filter

does not have a significant transient period and the

estimated state converges more quickly to the actual value
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Figure 4.22 NPS AUV II Simulation - Depth

than the other states do, even in the presence of

measurement noise and the initial estimation error.

Figures 4.23 through 4.25 show the last three state

estimates, the Euler angles. In general, these show a more

significant transient period than for any of the other

estimates. Moreover, the Extended Kalman filter does not

reject the noise fur roll or pitch as well as it does for

the rate gyroscope measurements.

The noise evident in both the roll and pitch

estimates is caused partially by the noise added to the

simulated accelerometer measurements. It is also caused by

the nonlinear nature of these measurements including both
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Figure 4.23 NPS AUV II Simulation - Euler roll angle

the trigonometric nonlinearities in the coordinate

transformation equation and the accelerometer dead zone

nonlinearity.

The heading estimate, shown in Figure 4.25, does not

appear to have the noise corruption evident in the other two

Euler angle estimates. This is because the heading is

measured directly by the heading gyroscope. While the scale

hides any noise present, the heading gyroscope does not

generate a noisy signal and so little noise (standard

deviation of 0.001 radians) was added in the simulation.
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Figure 4.24 NPS AUV II Simulation - Euler elevation angle

Finally, Figures 4.26, 4.27, and 4.28 show the

Extended Kalman filter's estimate of the rate gyroscope

biases. These bias terms have been simulated as described

in Section B and were given the same values as in the SDV

simulation run for more consistent comparison. As with the

SDV navigator, the NPS AUV II navigator is able to estimate

this simple bias model.
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Figure 4.25 NPS AUV II Simulation -Euler azimuth angle
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Figure 4.26 NPS AUV II Simulation - Estimated roll rate
gyroscope bias
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Figure 4.27 NPS AUV II Simulation - Estimated pitch rate
gyroscope bias
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Figure 4.28 NPS AUV II Simulation - Estimated yaw rate
gyroscope bias

2. Estimation of Forward Speed from Depth Rate

Figures 4.29, 4.30 and 4.31 show the results of

speed estimation correction using depth-rate and pitch
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information. For this run the input has been changed from a

steady turn to a straight line and the dive plane command

has been changed to a square wave. More importantly,

however, a 10 percent difference between the simulated

vehicle's propeller speed and the Extended Kalman filter

propeller speed input has been deliberately introduced. The

filter has been given a slower propeller speed and thus it

tends to generate a lower forward speed estimate.
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Figure 4.29 NPS AUV II Simulation - Forward velocity with
propeller speed error

By changing the term in the Q matrix associated with

the expected disturbance on the forward speed to 20

feet 2/second 2 from 0.05 feet 2/second 2 , the estimate of

forward speed has been made more sensitive to the
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correlation between depth rate and velocity. As shown by

comparing Figures 4.29, 4.30 and 4.31, the estimate of u

improves when the absolute magnitude of the pitch angle is

high and when absolute magnitude of the depth rate is high.

It is interesting to note that in this simulation the

estimated speed actually increases when the dive planes are

at their maximum deflection, a condition which induces drag

and which would normally cause the vehicle speed and the

estimated speed to drop.
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Figure 4.30 NPS AUV II Simulation - Euler pitch angle with
propeller speed error

Because the Extended Kalman filter does not expect a

steady-state error in u, the estimate oscillates. The

frequency of the oscillation is at twice the frequency of

the pitch and depth rate because the speed estimation is

affected by the magnitude of these signals rather than their

sign.
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Figure 4.31 NPS AUV II Simulation - Depth rate with propeller
speed error

To remove the variation in the forward speed

estimate and to force the estimate to more closely track the

actual vehicle speed in the presence of the induced error,

i.e. when the forward speed prediction does not correlate

with the estimated pitch and depth rate, the predictor was

changed to include a constant propeller-speed bias term much

like the rate gyroscope bias terms. This was done by

appending the term from the linearized B matrix which

relates propeller speed to forward speed to the linearized A

matrix. The plant noise covariance matrix, Q, and the

initial filter error covariance matrix, P, were modified to

include this bias. The element of Q associated with forward

speed was reduced to cause the filter to compensate for the

prediction inconsistency by correcting the value of the

propeller bias.
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Some results of this modification are shown in

Figures 4.32 and 4.33. As expected, the variation in the

forward speed estimate is reduced; however, a steady-state

2.5

2 .. . .. ..
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seconds

Figure 4.32 NPS AUJV II Simulation - Forward velocity with
propeller speed bias

error still exists between the estimated and the actual

speeds. This error is a function the linearized model.

The actual propeller error introduced in this

simulation was 55 rpm; however, as shown in Figure 4.33, the

filter estimates the error at approximately 54 rpm.

Additionally, the filter was given an initial condition for

the bias of 50 rpm. While this is artificial, it did allow

the filter to reach an apparent steady-state value in a
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Figure 4.33 NPS AUV II Simulation - Propeller speed bias

short amount of time. If the bias were initialized at zero,

then the filter would not have reached steady state in the

simulated run time. It was found that the value of the bias

state changed more slowly as the eigenvalues of the error

covariance matrix became slower.

Because there is a steady-state error and because

the length of time required by the filter to reach a steady-

state value is approximately equal to the run time of a

typical pool mission for the NPS AUV II, this approach to

correcting a speed-estimation error is not used to filter

the recorded experimental data.
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V. EXPERIMENTAL RESULTS

A. GENERAL

This chapter presents the results of using actual data

recorded from the instruments on board the NPS AUV II as

input to the navigator rather than simulated measurements as

in Chapter IV. The data was taken during a 100 second test-

and-evaluation mission conducted in the Naval Postgraduate

School's swimming pool on 26 August 1991. The data was

recorded during the second mission run by the vehicle that

day during which the vehicle made a single U-turn while

porpoising at a depth of approximately two feet. A

piecewise constant Extended Kalman filter gain has been used

with a table look-up scheme to process this data. The

navigator's output and the differences between the actual

and expected results are discussed.

B. IMPLEMENTATION

The data recorded from the vehicle's instruments include

a time record, a depth cell measurement, a paddle wheel

speed log measurement, three rate gyroscope measurements,

two measurements from a vertical gyroscope (roll and pitch),

dive plane and rudder commands, and left and right propeller

shaft speeds. There were no accelerometers in the vehicle

at the time the data was recorded. The instruments on board
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the NPS AUV II have analog output which is converted to

digital form by the on board computer.

The data sampling interval was 0.1 second. Although the

instruments were sampled at this rate, the navigator uses

data at every other sample tin.- or at 0.2 second intervals.

This reduces the navigator's computational requirements

without sacrificing performance.

To further reduce the computational burden, the Extended

Kalman filter has been implemented with piecewise constant

gain matrices instead of the time varying matrices used in

the simulations described in Chapter IV. Using this method

obv_.ates the calculation of the gain matrix on-line.

Because the gain matrix is not calculated on-line, the

relinearization and discretization of the vehicle model,

required if the fully time-varying Extended Kalman filter

were used, are not needed.

To use piecewise constant K matrices, several steady-

state gain matrices were calculated for a given set of

estimated states. Several values of forward speed, u, and

Euler pitch angle. e, were selected. For each combination,

the corresponding steady-state K matrix was calculated and

stored. The built-in MATLAB function DLQE, (discrete linear

quadratic estimator) was used to calculate the gain

matrices. The respective values of both states used to

generate the results presented this chapter were
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u e 11.5 2.0) feet/sec (5.1)
9 E -0.05 -0.025 0.0 0.025 0.05} radian.

While other values have been used, these give satisfactory

results because the measurements are sensitive to estimated

pitch and these pitch intervals are small making the gain

approximation better.

The net result of using a 0.2 second discrete time

interval and using the piecewise constant K matrix is that

the 100 second mission can be processed in approximately 40

seconds of processor time (MS-DOS PC with a 33 MHz Intel

80386 processor). If the entire algorithm were written in

C, instead of MATLAB and C, it is expected that this time

would be reduced significantly.

C. NAVIGATOR OUTPUT

Figures 5.1 through 5.16 show the estimated states

generated by the navigator using the recorued data. For

those states which correspond to an instrument output, the

figure displays both the recorded measurement and the

estimated state.

The remainder of this section describes the details of

the Extended Kalman filter navigator responses to the

recorded data. The pertinent characteristics are explained.

This follows closely the format of the previous chapter.
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Figure 5.1 compares the position estimate produced by

the navigator with a dead-reckoning estimate. The dead

reckoning plot was generated using the recorded vehicle
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Figure 5.1 - NPS AUV II - X-Y position plot

speed and heading gyroscope measurements. No accurate

record of the actual position of the vehicle during this

mission is available. The borders of the graph correspond

approximately to the dimensions of the pool. The initial

position of the vehicle was approximately 20 feet from the

short wall and 15 feet from the long wall. There is a

significant difference between the dead reckoning plot and

the navigator output which is attributed to the side slip,
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v, experienced by the vehicle in the turn, which is not

taken into account in dead reckoning.

The estimated forward speed corresponds well to the

speed log measurement as shown in Figure 5.2. The

variations in the speed are caused by both the vehicle's

speed controller which uses unfiltered speed log

measurements in feedback and the dive plane commands, which

induce drag. During the vehicle's 180 degree turn, which

2.5 r

... ... ... ...... **, .,7 ...

2 - *

0 .5 . .. .............

0 10 20 30 40 50 60 70 80 90 100

seconds

Figure 5.2 NPS AUV II - Forward velocity

started at approximately the 40 second mark, a significant

difference between the measured speed and the estimated

speed develops. The difference is due in part to errors in

the model and in part to the side slip velocity, shown in
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Figure 5.3. Side slip causes the paddle wheel to generate

erroneous speed measurements.

The estimated side slip velocity, v, shown in Figure

5.3, approaches a minimum value of approximately -0.5

feet/second during the turn. There is no instrument on the

vehicle to measure this quantity so there is no measurement

for comparison. The oscillations present prior to the turn

are due to the low initial vehicle speed, which makes the
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Figure 5.3 NPS AUV II - Estimated lateral velocity

vehicle itself underdamped in yaw, and the vehicle's heading

controller which is also underdamped. During the turn, the

estimated side slip approaches -0.5 feet/second and has not

returned to a zero mean value by the end of the run. This
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latter fact results in the angled trajectory in the X-Y

plane evident in the return-leg portion of Figure 5.1.

While the estimated heading is very close to the measured

heading used in the dead reckoning plot, the lateral

velocity gives the vehicle an oblique path.

The body coordinate vertical velocity, w, does not have

a significant effect on the position estimate because the

pitch angles are relatively low; however, this state does
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Figure 5.4 NPS AUV II - Estimated vertical velocity

affect the depth-rate measurement. As with side slip, there

is no instrument to measure w. The relatively large spike

occurring in the first few seconds is due to both the

vehicle and the filter transient effects.
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Comparison of the angular rate estimates shown in

Figures 5.5 through 5.7 with those of the simulations

indicates that the filter is not as sensitive to measurement

noise as was indicated in simulation. This is largely

because the data used in this study is relatively free of

the noise present in other data sets.

As in the simulations, Figure 5.5 shows that the

estimated and the measured roll rate, p, exhibit a high

frequency oscillation when the vehicle is operating at low
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Figure 5.5 NPS AUV II - Roll rate

speed. As with the side slip, the vehicle's roll mode is

underdamped at low speed but becomes more damped as the

hydrodynamic forces on the vehicle increase with speed. The
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gyroscope measurement exhibits quantization noise to a

significant degree. The obvious bias in the measurement is

due largely to this effect. Additionally, the measurement

gives no evidence of roll during the turn, although the

navigator does estimate a rolling effect between

approximately 45 and 65 seconds. This could be because the

model is inaccurate or because the quantization noise is

hiding the effect. Comparison with the roll angle

measurement indicates that it is the latter.

Figure 5.6 shows the estimated and the measured pitch

rate, q. As with the w estimate, both the vehicle and the

filter transient effects produce the spike in the beginning

of the plot. For all but the peak values, the navigator

estimate corresponds closely to the measurement. The

mismatch at the maximum values indicates that the model is

in error. If it were just a bias in the measurement then

the estimate would be low through the entire pitching

motion.

The estimated yaw rate differs from the other angular

rate estimates in that there is a period of time when the

estimate differs significantly from the measurement. Figure

5.7 shows that this error occurs during the turn. Although

quantization noise is evident in this figure, it is not the

cause of the error as is hypothesized for the roll rate in

Figure 5.5. The measured yaw rate reaches a maximum value

in the turn while the estimate continues to increase. This
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Figure 5.6 NPS AUV II - Pitch rate

effect can be attributed to physical phenomena occurring in

the vehicle which is not included in the vehicle model, such

as rudder stall. Because it uses a constant bias model for

the rate gyroscope measurements, the navigator tends to use

the bias to account for differences in the expected behavior

and the measurements so the estimated bias varies more than

was expected.

Figure 5.8 shows the estimated and the measured depth.

There is excellent correlation between the measurement and

the estimate. Also, because the depth signal is relatively

free of noise, differentiating it to generate a depth-rate

signal is entirely feasible.
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Figure 5.7 NPS AUV II - Yaw rate

The Eulerian attitude angles are the last vehicle states

estimated by the filter. As previously mentioned, only the

pitch angle measurement and the heading measurement are used

in the navigator.

The roll measurement shows a significant, relatively

constant bias as well as quantization noise. A comparison

of the estimated and the measured roll angle, 0 in Figure

5.9 shows that the dynamics of the roll measurement do not

appear to differ greatly from the estimated roll. The roll

measurement (excluding the bias) corresponds to the

estimated roll, especially in the turn. The absence of a

corresponding roll rate measurement, from Figure 5.5,
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Figure 5.8 NPS AUV II - Depth

indicates that the roll motion experienced by the vehicle

was not detected by the roll rate gyroscope and that

measurement is in error.

Unlike the simulation studies, the estimated pitch

converges quickly to the measured pitch, e. However, Figure

5.10 shows that there is a systematic estimation error in

the pitch estimate. As opposed to the pitch rate

measurement and estimate, the pitch angle estimate appears

to underestimate the pitch throughout the cycle as though a

bias error were present. As discussed above, this might be

due to an error in the vehicle model or in the gyroscope

model.
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Figure 5.9 NPS AUV II - Euler roll angle

Figure 5.11 shows the estimated and the measured

heading, T. As previously mentioned, the heading gyroscope

measurement is very clean and the Extended Kalman filter

relies greatly on the accuracy of this measurement for

heading estimation. While the scale of this figure prevents

the heading prediction error from being seen, the mean

square error is approximately of 0.015 radian.

Additionally, the yaw rate error shown in Figure 5.7 is not

evidenced in the heading estimate indicating that that error

is insignificant for navigating a short-range mission.

Figures 5.12 through 5.14 show the three estimated rate

gyroscope bias terms. As previously mentioned, the Extended
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Figure 5.10 NPS AUV II - Euler elevation angle

Kalman filter tends to compensate for prediction

inconsistencies by changing the bias terms. This is most

apparent in Figure 5.15 which has a negative ramp-shaped

section corresponding to the wedge shaped difference between

the yaw rate measurement and estimate. It is also evident

in the middle section of the roll rate bias estimate which

corresponds to the vehicle's turn. Although none of these

bias estimates is as invariant as in the simulation runs,

they all appear to approach some non-zero mean value when

the vehicle is running in a straight path.
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Figure 5.12 NPS AUV II - Estimated roll rate gyroscope bias
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Figure 5.14 NPS AUV I - Estimated yaw rate gyroscope bias

In using the pitch gyroscope measurement, the filter was

augmented to include a bias term for pitch. This is shown

in Figure 5.15. As with the other bias terms, the estimate

is not constant, but it does appear to evolve around some

non-zero mean value. The variation in this bias is related
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Figure 5.15 NPS AUV II - Estimated pitch gyroscope bias

to the time varying pitch angle prediction error made

evident by the vehicle's porpoising.

The final measurement used by the filter is depth rate

which is derived from the depth cell data by a simple

difference equation. Figure 5.16 shows the estimated and

the derived depth-rate measurement.

D. ALTERNATE SPEED ESTIMATION

To show that depth-rate information could be used to

generate speed estimates without knowledge of vehicle

dynamics, the depth cell data and the pitch gyroscope data

have been processed by a simple second-order Extended Kalman

filter which does not require a dynamic model of the AUV.

For this filter, both the speed and the pitch are modeled as

smoothly varying signals. The measurements used are pitch
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Figure 5.16 NPS AUV II - Depth rate

and depth rate. The measurement equation for depth rate is

therefore nonlinear as explained in Chapter III. The system

equations for this estimator are given by

[~ 0 01)[;]+[vi] (5.2)

= [ , [-t ?i1 +[ (5.3)

where u and M are white Gaussian noise signals. The

linearized C matrix used by the Extended Kalman filter is

therefore given by
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0 1 s4
C = sin - cos (54)

With this system of equations, 8 must be non-zero in order

for the state to be observable.

With simulated data, these equations give perfect speed

and pitch estimates even with a sinusoidal pitch measurement

in spite of the linear approximation and the white noise

assumption. A wide range of values could be used in Q and R

without making the filter unstable. However, using actual

data, in which other effects, including that of w, the body

vertical velocity, are not taken into account, gives

approximate u estimates while providing accurate e

estimates. This is shown in Figures 5.17 and 5.18.

Additionally, depth rate is not estimated as accurately as

pitch as seen in Figure 5.19.

The stability of the estimator is very sensitive to the

values chosen for Q and R. These results were obtained with

values of

[0 [0 0 1 (5.5)
0 0.1

and
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Figure 5.17 NPS AUV II - Forward velocity using alternate
estimation model

, [ 0.001 0] (5.6)0 0.01

Other values yield a stable filter, but these values give

the best compromise between accuracy of the three quantities

estimated.

If Q(2,2) were made smaller, even if the other values

were made larger to compensate, then the speed estimate

would become unstable and the pitch estimate would not track

the measured pitch; however, the depth-rate estimate would

track even the noise in the depth-rate measurement.

87



0.1

0 ,

-0.1 -

-0.2 , ,
0 10 20 30 40 50 60 70 80 90

seconds

Figure 5.18 NPS AUJV II - Pitch angle using alternate forward
velocity estimation model

Although this second-order filter does give reasonable

estimates, and is much simpler than the full navigator, its

estimates do not have the accuracy that can be obtained by

using information about the vehicle dynamics. However, if

such information is not available, then this approach could

be used to estimate speed without accelerometers or rate

gyroscopes.
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VI. SUMMARY, CONCLUSIONS, AND RECOMO4ENDATIONS

A. SUMMOARY

This thesis presents a study of model-based navigators

for small autonomous underwater vehicles. The approach

taken in the design and testing of the navigators included:

1. The development of linearized models for the SDV and
the NPS AUV II based on nonlinear models which were
already available.

2. The programming in C and MATLAB of both the nonlinear
and linearized models for both vehicles.

3. The development and programming of nonlinear and
linearized measurement equations for using
accelerometers as attitude sensors.

4. The development and programming of nonlinear and
linearized measurement equations for using depth rate
to estimate forward speed.

5. Simulation studies for both vehicles using additive
white Gaussian noise, an accelerometer dead zone model,
and a gyroscope bias model.

6. Experimental studies with the NPS AUV II using recorded
instrument data.

B. CONCLUSIONS

In this study, a navigator which uses knowledge of the

vehicle dynamics is developed. In particular, speed

estimation is obtained by combining the depth rate with

inertial measurements.
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The following conclusions can be drawn from the results

of this study:

1. Position, attitude, velocity and angle rate estimation
for both vehicles is possible.

2. Velocity and attitude estimation are possible through
the use of nonlinear measurement equations.

3. Simulated instrument readings can be filtered and
simulated gyroscope bias errors can be accurately
predicted using the navigator.

4. Actual data can be filtered with simple instrument
noise and error models.

5. A piecewise constant Extended Kalman gain is adequate
for the NPS AUV II navigator.

6. The algorithm can be implemented in real time with a
with a sampling rate of 5 Hz without overtaxing the
processor.

C. RECOMMENDATIONS

Although manufacturers indicate that a small, accurate,

laser-gyroscope-equipped, inertial measurement unit will be

available in the near future, the algorithm explored in this

thesis could be used in the interim for the NPS AUV II

during pool missions. It is therefore recommended that the

following be accomplished to facilitate implementation of

the navigator:

1. Convert the navigator's main loop and other MATLAB
functions to C and compile the entire program for use
in the current NPS AUV II computer.
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2. Accurately record the actual position of the vehicle in
the pool for comparison with the navigator's position
estimates, and update the hydrodynamic coefficients and
filter parameters as required.

3. Use recorded gyroscope data to identify a better low-
order model of the gyroscope measurement.

4. Use recorded data from each measurement source to
identify a better low-order noise model.

If these can be accomplished then a study should be made

to integrate differential Global Positioning System (GPS)

data with the navigator, or to use differential GPS to reset

the position estimate of the navigator periodically.

Finally, it is recommended that the current research in

expert-system sonar processing be integrated with the

navigator. As with GPS, the sonar could be used either to

aid the navigator in real time, or to reset the position

estimates periodically, depending on the sonar's accuracy

and processing requirements. The sonar information could

also be used to correct any unknown initial errors in the

heading gyroscope which are not taken into account by the

navigator.
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APPENDIX A

Program Listing for SDV Simulation

% File SIMUL9.M

This MATLAB Script file performs the SDV
navigator simulation. It initializes the
variables and contains the main loop for the
navigator.
Velocities are in ft/sec; angles in radians

% Calls MKABMEX.MEX, C2D.M, KALM.M, MODEL.MEX
GETMEAS.M, MAKEMEAS.M

% Modified 11 Oct 91

% Ver.9 No speed log measurement
Previous versions used a different accelerometer
measurement concept and did not model
gyroscope errors

%

% Set initial state
Z = 20;
rpm = 500;
uO = 0.30;
wO = 0.0;
pitchrate = 0.0;
pitch = 0.0;
heading = pi/8;
phiO = 0.0;
tht0 = pitch;
psio = heading;
initial state =
[uO;0;wO;0;pitchrate;0;0;0;Z;0;pitch;heading];

% Set initial inputs
inputO = [0;0;0;rpm];

% Set sample interval and run time
dt = 1.0;
Tf=100;
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% Set up p>.nt and measurement noise covariance
% matrices
% (prepare to leave out X and Y terms from Kalman filter)
Q=zeros(13);
Q(1:10,1:10) = 0.01*eye(10);
J(I,1) = .1;
Q(11:13,11:13) = 0.005*eye(3);

R=.05*eye(9);
R(6,6) = 10;

% Set up initial estimate covariance matrices for 13 states
% u,v,w,p,q,r,Z,phi,theta,psi plus
% 3 rate gyro bias states
Pold = eye(13);
Pold(8,8) = .1; Pold(9,9) = .1; Pold(10,10) = .1;

% Initialize state vectors for simulation
% simulate unknown vehicle state with random noise in IC
% state = simulated vehicle
% navig = Extended Kalman filter navigator

rand('normal')
g = 32.2;
kmax =Tf/dt;
state = zeros(12,kmax);
state(:,1) = initial state + 0.03*rand(12,1);
navig = zeros(15,kmax);
navig(:,l) = [initial_state;0;0;0];

% shell for measurement matrix C:

C=[0 0 0 1 0 0 0 0 0 0 1 0 0; % 1 p
0 0 0 0 1 0 0 0 0 0 0 1 0; % = + biases,
0 0 0 0 0 10 0 0 0 0 0 1; % -J r
0000001000000;% depth
0 0 0 0 0 0 0 0 0 0 0 0 0; % depth dot
0000000000000; %
0 0 0 0 0 0 0 0 0 0 0 0 0; % will be =-JRjjgj
0000000000000; %
0 0 0 0 0 0 0 0 0 1 0 0 0];% heading = Psi

% disturbance input matrix (different from Gam)
Gam2=sign(Q);

meas(:,1)=zeros(9,1);

for (i=l:kmax)

inputm=(0.2;0.20*cos(2*pi*i*dt/20);0;rpm];
inputv=[0.2;0.20*cos(2*pi*i*dt/20);0;rpm];

94



% assign states required in C matrix relinearization
uh = navig(1,i); wh = navig(3,i);
phih = navig(lO,i);
theh = navig(ll,i);
psih = navig(12,i);

% Recalculate C, Phi and Gain matrices around estimate of
% states. For Mdot use abbreviated form of analytic
% equation

C(5,1) = -sin(theh);
C(5,3) = cos(theh);
C(5,9) = -uh*cos(theh) - wh*sin(theh);

C(6,9) = ...g*cos(theh);
C(7,8) = ..g*cos(phih)*cos(theh);
C(7,9) = -g*(...sin(theh)*sin(phih));
C(8,8) = .. g*(sin(phih)*cos(theh));
C(8,9) = -g*(...sin(theh)*cos(phih));

% in case accel is in dead zone
if (abs(meas(6,i))<.4)

C(6,:)=zeros(C(6, :));
end;

% Setup the full 12 state re-linearized model
[a,b]=mkabmex(navig(l:12,i) ,inputm);

% delete from 'a' end 'b' elements having to do with
% X and Y to improve stablity of Extended Kalman filter
a= [a(1:6,l:6) , a(1:6,9:12);

a(9:12,1:6), a(9:12,9:12) ];
b =[b(1:6,:);

b(9:12, :)];

% add gyro bias terms as constants
a = [a zeros(lO,3);

zeros(3,13) J;
b = [b;zeros(3,4)];

% Dicretize the system
[ Phi, Gan] =c2d( a,b, dt );

% Calculate Kalman gain
(K,Pnew] = kalm(Phi,Gam2,C,Pold,Q,R);
Pold=Pnew;

% Calculated next simulated vehicle state
state(:,i+l) = model(state(:,i),inputv,dt);
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% Generate simulated instrument measurements
[rategyro,Z,Zdot,accel,hdg)=getmeas3(state( :,i+1),Z,dt);
meas(:,i+l) = [rategyro;Z;Zdot;accel;hdg];

% Calculate next navigator prediction
navig(1:12,i+1) =model(navig(1:12,i) ,inputm,dt);
navig(13: 15,i+1) =navig(13: 15,i);

% Generate predicted measurements
modmeas = makmeas2(navig(:,i+1),navig(:,i),dt);

% Calculate correction using Kalman gain
esterr( :,i) = K*(meas(:,i+1)-modneas);

% Correct prediction. Zeros are to account for X and Y
% not being included in the Extended Kalman filter
navig( :,il=

navig(:,i+1)+fjesterr(1:6,i);O;O;esterr(7:13,i)];

end;

% Generate graphical output

t=O :dt:Tf;

!del sdvxy.met
plot(state(7, : ),state(8,:) ,navig(7,:) ,navig(8,: ) );grid;
xlabel('X - feet');ylabel('Y - feet');pause
meta sdvxy

Idel sdvu.met
plot(t,state(1,:),t,nav-igj(1,:));grid
xlabel( 'seconds' );ylabel( 'feet/sec' );meta sdvu;pause

Idel sdvv.met
plot(t,state(2,:) ,t,navig(2,: ) );grid
xlabel( 'seconds' );ylabel( 'feet/sec' );meta sdvv;pause

!del sdvw.met
plot(t,state(3,:),t,navig(3,:));grid
xlabel('seconds' );ylabel( 'feet/sec' );meta sdvw;pause

Idel sdvp.met
plot(t,state(4, : ),t,navig(4, : ));grid
xlabel( 'seconds' );ylabel( 'radians/sec' );meta sdvp;pause

Idel sdvq.met
plot(t,state(5,:),t,navig(5, :));grid
xlabel( 'seconds' );ylabel( 'radians/sec' );meta sdvq;pause

Idel sdvr.met
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plot(t,state(6, :) ,t,navig(6, : ));grid
xlabel( 'se~.onds' );ylabel( 'radians/sec' );meta sdvr;pause

Ide]. sdvz.met
plot(t,state(9,:),t,navig(9,:));grid
xlabel( 'seconds' );ylabel( 'feet' );meta sdvz;pause

Ide]. sdvtheta.met
plot(t,state(11, :),t,navig(1, : ) );grid
xlabel( 'seconds' );ylabel( 'radians' );meta sdvtheta;pause

Ide]. sdvpsi.met
plot(t,state(12,:),t,navig(12, :));grid
xlabel( 'seconds' );ylabel( 'radians' );meta sdvpsi;pause

Ide]. sdvpbias.met
plot(t,navig( 13,:)) ;grid
xlabel( 'seconds' );ylabel( 'radians/sec' );meta sdvpbias;pause

Ide]. sdvqbias.ret
plot(t,navig( 14,:) );grid
xlabel( 'seconds' );ylabel( 'radians/sec' );meta sdvqbias;pause

!del sdvrbias.met
plot(t,navig( 15,:)) ;grid
xlabel( 'seconds' );ylabel( 'radians/sec' );meta sdvrbias;pause
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/*************************** ******************

* File MODEL.C

* C language source code for MODEL.MEX. Must bo
* compiled within MEX subdirectory of MATLAB.
* It is used like a MATLAB function:

* function state = model(oldstate,inputs,dt)

* This code was translated from the DSL (FORTRAN
* based) code in R. Boncal's MS Thesis, 1987,
* NPS, Monterey, CA. It is based on modified
* equations of motion from NSRDC Report 2510
* June, 1967.
*

* Called by SIMUL9.M
*

#include <math.h>
* include <stdio.h>

#include "modelprm.h"
#include "cmex.h"

int model( double *state, double *oldstate, double
*inputs, double *dt );

/*
* This is the section of code recognized by MATLAB
* It calls function MODEL
*/

void user fcn( int nlhs, Matrix *plhs[], int nrhs, Matrix
*prhs(]{

double *oldstate, *inputs, *dt, *state;

if (nrhs != 3)
mexerror("Must be three input arguments.");

if (nlhs 1= 1)
mexerror("Must be one output argument.");

if (ROWSIN(0) 1= 12 ,, COLS_11(0) 1= 1)
mex error("Previous state vector not correct size.");

if (ROWS_IN(l) 1= 4 ,H COLS_IN(1) 1= 1)
mex error("Input vector not correct size.");

if (ROWS_IN(2) 1= 1 ,' COLS_IN(2) 1= 1)
mexerror("Time interval must be a scalar.");

plhs[O] = creatematrix(12,1,REAL);
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state = OUT(0);
oldstate = IN(O);
inputs = IN(1);
dt = IN(2);

model(state,oldstate, inputs,dt);

P* This code is the nonlinear model of the SDV *

mnt model( double *state, double *oldstate, double *inputs,
double *dt)

int j, k;
double u, v, W, p, q, r, phi, theta, psi;
double dr, ds, db, rpm, delt;
double mass, latyaw, norpit, re, termO;
double signu, signn, eta, cd0, ct, ctl, eps, xprop;
double ucf[4J, fp[6], f[12];
double tmpl, tmp2, tmp3, tmp4;
double cos_theta, sin_theta, tan_theta;
double cosphi, sinphi, cosjpsi, sinpsi;

u = oidstate[O];
v = oidstatell];
w = oldstate[2];
p = oldstate[3];
q = oldstate[4];
r = oidstate[5];
phi = oldstate[9];
theta = oidstate[1O];
psi = oldstate~ll];

dr = inputs[O];
ds = inputs[l];
db = inputs(2];
rpm = inputsf 3];

delt = *dt;

latyaw = norpit = 0.0;
mass = weight/g;
re = u*l/nu;

signu = FSIGN(u);
signn = FSIGN(rpm);
if (fabs(u) < xltest)

u =xltest;

eta = .012*rpm/u;
re =u*l/nu;

cd0 0.00385 + 1.296e-17 *(re - .2e7)*(re -1.2e7);
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ctl = o.008*l*1/ao;
ct = ctl*eta*fabs(eta);
eps = .0l.+signn/signu*(sqrt(ct+1.O)-l.O)

/(sqrt(ctl+l.O)-l.O);
xprop =cdO*(eta*fabs(eta) - 1.0);

* calculate the drag force,
* integrate the drag over the vehicle
* integrate using 4 terms

for (k=O; k<4; ++k){
tmpl = v+g4[k]*r*l;
tmp2 = w-.g4[k]*q*l;
ucf~k] = sqrt(tmpl*tmpl + tmp2*tmp2);
ifGl.Oe-lO <= ucf[k]) f

termO =((rho/2.0)*(cdy*hh[kI*tmpl*tmpl

+ cdz*br~k]*tmp2*tmp2)) *gk4[4]*l/ucf~k];
latyaw += termo*tmpl;
norpit += termo*tmp2;

* force equations

* common sub-expressions

tmpl = (rhol2.0)*1*l;
tmp2 = tmpl*l;
tmp3 = tmp2*l;
tmp4 = tmp3*1;
cos-theta = cos(theta);
sin -theta = sin(theta);
tan -theta = sin-theta/cos theta;
cosphi = cos(phi);
sinphi = sin(phi);
cospsi = cos(psi);
sinpsi = sin(psi);

* longitudinal force

fp(O] = mass*v*r - mass*w*q + mass*xg*q*q
+ mass*xg*r*r - xnass*yg*p*q - mass*zg*p*r
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+ tmp3*(xpp*p*p+xqq*q*q + xrr*r*r+xpr*p*r)
+ tmp2* (xwq*w*q+xvp*v*p+xvr*v*r
+ u*q*(xqds*ds+xqdb*db)+ xrdr*u*r*dr)
+ tmpl*(xvv*v*v+xww*w*w + xvdr*u*v*dr
+ u*w*(xwds*ds+xwdb*db) + u*u*(xdsds*ds*ds+xdbdb*db*db
+ xdrdr*dr*dr)) - (weight -boy)*sin theta
+ tmp2*xqdsn*u*q*ds*eps

* + tmpl* (xwdsf*u*w*ds+xdsdsn*u*u*ds*ds )*eps
+ tmpl*u*u*xprop;

* lateral force

fp[l] = -mass*u*r - mass*xg*p*q + mass*yg*r*r - mass*zg*q*r
+ tmp3*(ypq*p*q + yqr*q*r)+tmp2*(yp*u*p +
yr*u*r + yvq*v*q + ywp*w*p + ywr*w*r) + tmpl*
(yv*u*v + yvw*v*w +ydr*u*u*dr) -latyaw +(weight-boy)*
cos-theta*sin-phi+mass*w*p+mass*yg*p*p;

* normal force

fp[2] = mass*u*q - mass*v*p - mass*xg*p*r - mass*yg*q*r +
mass*zg*p*p + mass*zg*q*q + tmp3*
(zpp*p*p+zpr*p*r + zrr*r*r) + tmp2*(zq*u
*q+zvp*v*p + zvr*v*r) +tmpl*(zw*u*w
+ zvv*v*v+u*u*(zds*ds+zdb*db) )-
norpit+(weight-boy) *cos_theta*cosphi
+tmp2*zqn*u*q*eps +tmpl*(zwn*u*w +zdsn*
u*u*ds) *eps;

* roll force

fp[3] = -iz*q*r +iy*q*r -ixy*p*r +iyz*q*q -iyz*r*r +ixz*p*q+
mass*yg*u*q -mass*yg*v*p -mass*zg*w*p+tmp4* (kpq*
p*q + kqr*q*r) +tmp3*(kp*u*p +kr*u*r + kvq*v*q +
kwp*w*p + kwr*w*r) +tmp2*(kv*u*v + kvw*v*w) +
(yg*weight - yb*boy)*cos Itheta*cos.yhi - (zg*weight -

zb~by)*os~het~sph' + tmp3*kpn*u*p*eps+
tmp2*u*u*kprop +mass*zg*u*r;

* pitch force

fp(4] = -ix*p*r +iz*p*r +ixy*q*r -iyz*p*q -ixz*p*p +ixz*r*r-
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mass*xg*u*q + mass*xg*v*p + mass*zg*v*r - mass*zg*w*q
+ tmp4*(mpp*p*p +mpr*p*r +mrr*r*r) +
tmp3*(mq*u*q + mfvp*v*p + mvr*v*r) +
tmp2*(mw*u*w+mvv*v*vIu*u*(mds*ds+mdb*db)) + norpit-
(xg*weight-xb*boy) *cos Itheta*cosphi+tmp3*mqn*u*q*eps
+ tmp2*(mwn*u*w+mdsn*u~u*ds)*eps-
(zg*weight-zb*boy) *sjn_theta;

* yaw force

fp[5] = -iy*p*q +ix*p*q +ixy*p*p -ixy*q*q +iyz*p*r -ixz*q*r-
mass*xg*u*r + mass*xg*w*p - mass*yg*v*r + mass*yg*w*q
+ tmp4*(npq*p*q + nqr*q*r) +tmp3*(np*u*p+
nr*u*r + nvq*v*q +nwp*w*p + nwr*w*r) +tmp2*(nv*
u~v + nvw~~v*w + ndr*u*u*dr) - latyaw + (xg*weight
xb*boy)*cos -theta*sinphi+(yg*weight)*sin theta
+tmp2 *u*u*nprop..yb*boy*sin theta;

* now compute the f(0-5) functions

for (j=0; j<6; ++j)
for (f[j]=O.0,k=0; k<6; ++k)

f[j] += xmmTinv[j]Ek]*fp[k];

* the last six equations come from the kinematic
* relations

* inertial position rates f(6-.8)

f(6] = u*cospsi*cos -theta + v*(cospsi*sin-theta*
sinphi - sinpsi*cosphi) + w*(cos~psi*sin-theta*
cosphi + sin~psi*sinphi);

f(7] = u*sinpsi*cos -theta + v*(sinpsi*sin-theta*
sinpi + osps~c _phi) + w*(sinpsi*sin-theta*

cosphi - cospsi*sinphi);

f[8] = -u*sin -theta +v*cos-theta*sin-phi
+w*cos theta*cosphi;

* euler angle rates f(9-11)
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f(9] = p + q*sinphi*tan theta + r*cosphi*tan-theta;
f[10] = q*cosphi - r*sinphi;
f[11] = q*sinphi/cos-theta + r*cosphi/cos_theta;

* Simpson's rule integration

for (j=O; j<12; j++)
state(j] oldstate~j] + delt *~]

return 0;
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/ *********************************************

* File MKABMEX.C

* C language source code for MKABMEX.MEX Must be
* compiled within MEX subdirectory of MATLAB.
* It is used like a MATLAB function:

* function [A,B] = mkABmex(state,inputs)

* This program makes a linearized model in MATLAB
* for the SDV around some (xO] and [uO] which are
* input parameters. The vehicle mass matrix and
* hydrodynamic coefficients are in "modelprm.h"
*

* This code is based on Taylor series linearization
* of the equations of motion in MODEL.C

* Called by SIMUL9.M
*

#include <math.h>
#include "tcmex.h"
#include "modelprm.h"

void makeab( double *A, double *B, double *state, double
*inputs);

/*
* Code recognized by MATLAB. It calls MAKEAB
*/

void user fcn( int nlhs, Matrix *plhs[], int nrhs, Matrix

*prhs[]
{
double *state, *inputs, *a, *b;

if (nrhs 1= 2)
mexerror("Must be two input arguments");
if (nlhs 1= 2)
mex error("Must be two output arguments");
if (ROWSIN(O) 1= 12 :: COLSIN(O) 1= 1)
mexerror("Initial state vector must have 12 states");
if (ROWSIN(1) 1= 4 1; COLSIN(1) 1= 1)
mexerror("Input vector must have 4 inputs");

plhs(O] = creatematrix(12,12,REAL);
plhs[l] = creatematrix(12,4,REAL);
a = OUT(0);
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b = UT(l);
state =IN(O);

inputs =IN(1);

makeab(a,b,state,inputs);

* This code generates the linearized A and B matrices
* from the partial derviatives of the equations of
* motion for the vehicle.

void makeab( double *A, double *B, double *state, double
*inputs

int i, j, k;
double a[12](12], b(61[41;
double aa[12] [12],bb(l23[4];
double uO, vO, wO, p0, qO, rO, phiO, thetaO, psiO;
double dr, ds, db, rpm;
double mass, latyaw, norpit, re, termO;
*double eta, cdo, ct, ctl, eps, xprop;
double tmpl, tmp2, tmp3, tmp4, tmp5;
double cos -theta, sin_theta, tan theta;
double cosphi, sinphi, cosypsi, sinpsi;

1* assign some common variable names *

uO = state[0);
vO = state~l];
wO = state[2];
p0 = state[3];
qO = state(4];
rO = state(5];
phi0 = state[9];
thetaO = statef 10];
psiO = state[11];

dr = inputs[O];
ds = inputs[1];
db = inputs[2);
rpm = inputs[3];

cos -theta = cos(thetaO);
sin-theta = sin(thetaO);
tan -theta = tan(thetaO);
cosjphi = cos(phiO);
sinphi = sin(phi0);
cos-psi = cos(psia);
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siflpsi =sin(psiO);

if (theta0 == 0.0) 1 sin -theta = 0.0; tan-theta = 0;}
if (phiO = 0.0) sinphi = 0.0;
if (psi0 0.0) sinlpsi = 0.0;

1* linear propulsion model *

eta = 0.012*rpmluO;
re = uO*l/nu;
cdo = 0.00385+( 1.296e-17 )*(re~1 .2e7)*(re~1 .2e7);
ct = 0.008*1*1*eta*abs(eta)/aO;
ctl = 0.008*1*l/aO;
eps = -l+(sqrt(ct+l).--)/(sqrt(ctl+1)-1);
xprop = cdo*(eta*abs(eta)-1);

/* assign commonly used values *

tmpl = rho/2*1;
tmp2 = tmpl*l;
tmp3 = tmp2*1;
tmp4 = tmp3*1;
tmp5 = tmp4*1;
mass = weight/g;

/* initialize a, b, aa, and bb *

for (j=0; j(12; j++)
for (k=0; k(12; k++)

a~j][kI = 0.0;

for (j=0; j<6; j++)
for (k=0; k<4; k++)

b[j][k] = 0.0;

for (j=0; j<12; j++)
for (k=0; k<12; k++)

aa[j][k] = 0.0;

for (j=0; j<12; j++)
for (k=0; k<~4; k++)

bb[j][k] = 0.0;

/* Build the 12x12 a matrix *

a[0J(03= tmp3*(xqds*ds*qO+xqdb/2*db*qO+xrdr*rO*dr)+
tmp2* (xvdr*vO*dr+xwds*ds*wO+xwdb/2*wO*db+
2*uO*(xdsds*ds*ds+xdbdb/2*db*db+xdrdr*dr*dr));

a(0J[0]= a[O]lO] + tmp3*xqdsn*qO*ds*eps+tmp2*(xwdsn*w0*ds+
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2*xdsdsn*uO*ds*ds )*eps+tmp2*uO*xprop+tmp3*
xqdb/2 *db*qO+tmp2 *xwdb/2 *db*wO+tmp2 *u0*
xdbdb/2 *db*db;

a(O]ll]= mass*rO+trnp3*(xvp*pO+xvr*rO)
+tnip2* (2*xvv*v0+xvdr*u0*dr);

a(03(2]= -mass*qO+tmp3*xwq*qO+trnp2*(2*xww*wO+xwds*ds*uO+
xwdb*db*uO+xwdsn*uO*ds*eps);

a(OJ[3]= -mass*yg*qO-mass*zg*rO+tip4*(2*xpp*pO~xpr*rO)
+tmp3*xvp*vO;

8(0] (43= -mass*wO+2*mass*xg*q0O-mass*yg*pO+tmp4*2*xqq*qO+
tmp3* (xwq*wO+xqds*ds*uO+xqdb/2*db*uo) +
tmp3*xqdsn*uO*ds*eps+tmp3*xqdb/2*db*uO;

a(O](5]= mass*vO+2*mass*xg*rO-mass*zg*p0+tmp4*(2*xrr*rO+
xpr*pO)+tmp3* (xvr*v0+xrdr*uO*dr);

a[O][1O]=-(weight-boy)*cos_theta;

a(1][O]=-mass*rO+tmp3*(yp*pO+yr*rO)+tmp2*(yv*vO+
2*ydr*uO*dr);

a(1] [13= tmp3*yvq*qO+tmp2*(yv*uO+yvw*wO);
a[1] [23= mass*p0OItmp3*(ywp*p0Iywr*r0)+tmp2*yvw*v0;
a(1] [33= mass*w0-mass*xg*q0+2*mass*yg*p0+tmp4*ypq*q0+
tmp3*(yp*uO+ywp*wO);

at1][4]=-mass*xg*p0-mass*zg*r0+tmp4*(ypq*pO+yqr*r0)+
tmp3*yvq*vO;

a[1] [5]=-mass*u0+2*mass*yg*r0-mass*zg*qO+tmp4*yqr*qO+
tmp3*(yr*uO+ywr*wO);

a[1][93= (weight-boy)*cos -theta*cosphi;
a(1][10]=-(weight-boy)*sin-theta*sinphi;

a[2] (03= mass*qO+tmp3*zq*qO+tmp2*(zw*wO+2*uO*zds*ds+
2*u0*zdb/2*db+( zwn*wO+2*zdsn*uO*ds )*eps)+tmp3*
zqn*qO*eps+tmp2*2*u0*zdb/2*db;

a[23 [13=-mass*p04tmp3*(zvp*p0+zvr*rO)+tmp2*2*zvv*v0;
a[2](2]= tmp2*(zw*uO+zwn*u0*eps);
a(2][3]=-mass*v0-mass*xg*rO.2*mass*zg*p0+tmp4*(2*zpp*
pO+zpr*rO )+tmp3*zvp*v0;

a[2] (4]= mass*u0-mass*yg*r0+2*mass*zg*qO+tmp3*zq*u0+
tmp3*zqn*uO*eps;

a(2][5]=-mass*xg*pO-nmass*yg*q0+tmp4*(zpr*pO+2*zrr*r0)+
tmp3*zvr*vO;

a(2][9]=-(weight-boy)*cos -theta*sinphi;
a(2](10]=-(weight-boy)*sin theta*cosjphi;

a[3](0]= mass*yg*qO+mass*zg*rO+tmp4*(kp*pO+
kr*r0)+tmp3*(kv*v0+2*u0*(kdb/2*db-kdb/2*db) )+
tmp3*uO*kprop+tmp4*kpn*pO*eps;
a(3J(1]=-mass*yg*pO+tmp4*kvq*q0+tmp2*(kv*u0+kvw*w0);
a(3J(2]=-mass*zg*p0+tmp4*(kwp*p+kwr*r)+tnp3*kvw*v0;
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a[3] (3]=-ixy*rO+ixz*qO-mass*yg*vO-mass*zg*wo+
tmp5*kpq*qO+tmp4* (kp*uO+kwp*wO);

a[3] [4]=-iz*r0+iy*rO+2*iyz*qO+ixz*pO+mass*yg*uo+
tmp5* (kpq*pO+kqr*rO )+tmp4*kvq*vO;

a[3] (5]=-iz*qO+iy*qO-2*iyz*rO+mass*zg*uO+tmp5*kqr*qO+
tmp4 *(kr*uO+kwr*wO);
a[3][9]=-(yg*weight-yb*boy)*cos-theta*sinphi-
(zg*weight-zb*boy) *cos theta*cosphi;

a[ 3](10 ]=-(yg*weight-yb *boy) *sin-theta*cosphi+
(zg*weight-zb*boy) *sin-theta*sinphi;

a[4] (0I=-mass*xg*qO+trnp4*mq*qO+tmp3*mw*wO+tmp3*uO*
(mds*ds+mdb/2*db) +tmp4*mqn*qO*eps+
tmp3* (mwn*wO+2*mdsn*uO*ds) *eps+tmp3*uO*mdb/2*db;

a(4](1]= mass*xg*pO+mass*zg*rO+txnp4*(mvp*pO+mvr*rO)
+tmp3*mvv*vO;

a[4][2]=-mass*zg*qO+tmp3*rnw*uO+tmp3*mwn*uO*eps;
a[4] t3]=-ix*rOtiz*r0-iyz*q0-2*ixz*pO+mass*xg*v0+
trnp5* (2*mpp*pO+mpr*rO )+trnp4*mvp*vO;

a[4)[4]= ixy*r0-iyz*p0-mass*xg*u0-mass*zg*w+tlp4*mq*u0+
tmp4*mqn*uO*eps;
a(4](5]=-ix*p0+iz*p0+ixy*q0+2*ixz*r0+mass*zg*v0+
tmp5* (mpr*pO+2*mrr*rO)+tmp4*mvr*v0;
a[4](9]=(xg*weight-xb*boy)*cos -theta*sinphi;
a[4] (10]=(xg*weight-xb*boy)*sin thieta*cosphi-
(zg*weight-zb*boy) *costheta;

a(5] [0]=-rass*xg*r0+tmp4*(np*p0+nr*r0)+tmp3*
(nv*vO+2*ndr*uO*dr) +tmp3*u0*nprop;

a [5][(1] =-mass*yg*r0+tmp4*nvq*q0+tmp3* (nv*uO+nvw*wO);
a[5][2]= mass*xg*pO+mass*yg*qO+tmp4*(nwp*pO+nwr*rO)+

tmp3 *nvw*vO;
a[5] [3)=.iy*q0+ix*q0+2*ixy*p0+iyz*r0+mass*xg*wO+tmp5*npq*q0+
tnip4* (np*uO+nwp*wO);

a[5][4]=-iy*p0+ix*p0O-2*ixy*q0-ixz*r0+mass*yg*w0+
tmp5* (npq*pO+nqr*rO )+trnp4*nvq*vO;

a[5] (5]= iyz*p0-ixz*q0-mass*xg*u0-mass*yg*v0+
tmp5*nqr*qO+tmp4* (nr*u0+nwr*wO);
a(5][9]=(xg*weight-xb*boy)*cos -theta*cosphi;
a(5][10]=-(xg*weight-xb*boy)*sintheta*sin-phi+
(yg*weight..yb*boy) *cos theta;

a[6] (0]= cospsi*cos theta;
a( 6] [1]= cospsi*Bifltheta*sinphi-sinJpsi*cosphi;
a[6](2]= cospsi*sin theta*cosphi+sinpsi*sinphi;
a(6] (9]=vO*cosjpsi*sin theta*cosphi+vO*sinpi
sin-Phi-w0*cos-psi*sin-theta*sinphi+
w0*Biflpsi*cosphi;
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a[ 6] [10] =-uO*cospsi*sin theta+vo*cos-psi*cos-theta*
sinphi+wO*cospsi*cos theta*cosphi;

a(6] (11]=-u0*sinypsi*cos theta-v0*sinpsi*sin theta*
sin-Phi-vO*cospsi*cos-Phi-w0*sin-psi*
sin-theta*sin-phi+w0*cos..ysi*sinphi;

a[7](0]= sinpsi*cos_theta;
a[7] [l]= sinpsi*sin -theta*sinphi+cos~psi*cosphi;
a[7] [2]= sinpsi*sin -theta*cosphi-cospsi*sinphi;
a[7]([9]= vO*sin~psi*sin theta*cosphi-v0*cospsi*
sin-phi-w0*sinpsi*sin theta*sinphi-
wO*cospsi*cosphi;

a[7][10]=-u0*sinpsi*sin -theta+vO*sin-psi*cos-theta*
sin-phi+wO*sinpsi*cos-theta*cosphi;

a[7] [11]=uO*cospsi*cos-theta+vO*cospsi*sin theta*
sin-Phi-v0*sinpsi*cosphi+wO*cospsi*
sin-theta*cos-phi+w0*sinpsi*sinphi;

a[8][O]=-sin_theta;
a[8][1]= cos_theta*sinyphi;
a[8][2]= cos_theta*cosphi;
a[8] [9]=vO*cos -theta*cosphi-w0*cos-theta*sin-phi;
a[8][1O]=-u0*cos -theta-~v0*sin-theta*sinphi-
w0*sin-theta*cosphi;

a[9] [3]=1;
a[9][4]=sinphi*tan theta;
a[9][5]=cosphi*tan theta;
a[9] [9]=qO*cosphi*tan -theta-r0*sinphi*tan theta;
a[9][l0]=qO*sinphi/cos-theta*l/cos_theta+

rO*cosphi/cos-theta*1/cos_theta;

a[ 10] [4]=cosphi;
a[ 10] [5]=-sinphi;
a[ 10] [9]=-qO*sinphi-r0*cosphi;

a[11] [4 ]=sinphi/cos_theta;
a(11J[5]=cosphi/cos_theta;
a[11] [9]=qO*cosphi/cos -theta-.rO*sin~yhi/cos_theta;
a[11J [1O]=qO*sinphi/cos theta*tan theta+

rO*cosphilcos_theta*tEan-theta;-

/* Build the 12x4 b matrix *
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b(O]lO]= tmp3*xrdr*uO*rOftmp2*(xrdr*uO*vO+uO*uO*2*xdrdr*dr);
b[O] (1]= uO*qO*xqds+uO*wo*xwds+uO*uO*2*xdsds*ds+

tmp3*xqdsn*uO*qO*eps+
tmp2* (xwdsn*uO*wO+2*xdsdsn*uO*uO*ds )*eps;

b(O][2]= uO*qO*xqdb+uO*wO*xwdbi+2*uO*uO*xdbdb*db;
b(0fl3]= tmp2*O.012*cdo*O.12*rpm;

b[l][O]= tmp2*ydr*uO*uO;

b(2] [1]=uO*uO*zds*tmp2+tmp2*zdsn*uO*uO*eps;
b[2) [2]=uO*uO*zdb*tmp2;

b[3][2]= 0;

b[4][1)= tmp3*(u0*uO*mds+mdsn~uO*u0*eps);
b[4][2]= tmp3*uO*uO*mdb;

b[5][O)= tmp3*ndr*uO*uO;

1* Multiply the appropriate parts of both by the inverted
*mass matrix

*inv(mass matrix)*df/dx

for (i=0; i<6; i++)
for (j=0; j<6; j++)

for (k=0; k<6; k++)
aa~iI(j] += xmminv(i]lkl*a[k]rj];

*inv(mass matrix)*df/dz

for (i=0; i<6; i++)
for (j=6; j<12; j+4-)

for (k=0; k<6; k++)

for (i=6; i<12; i++)
for (j=O; j(12; j++)

aa(i]lj] = ai(]

*inv(mass matrix)*df/du

for (i=0; i(6; i++)
for (j=0; j<4; j++)

for (k=O; k<6; k++)
bb~i][j] += xmminv~iIJ[k]*b[k][j];
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*reorganize the matrices for use by Matlab
*which stores matrices columnwise vice rowwise

fo*j1 j1;j+

for (=j1; ij2 ++)
A~i+12*j] = aa~i][j];

for (j=O; j<4; j++)
for (i=O; i<12; i++)

B~i+12*j] =bb[i][j];



*File MODELPRM.H

* This file contains all of the parameter
* coefficients used by the files MODEL.C.
* and I4AKEAB.C.
* These coefficients were obtained from
* NCSC Technical Memorandum 231-78, June 78

* longitudinal hydrodynamic coefficients

const double
xpp 7.0e-3, xqq =-1.5e-2, xrr =4.0e-3,

xpr =7.5e-4, xudot= -7.6e-3, xwq =-2.0e-1,

xvp = -3.0e-3, xvr = 2.0e-2, xqds =2.5e-2,

xqdb = -2.6e-3, xrdr = -1.0e-3, xvv =5.3e-2,

xww 1 .7e-1, xvdr = 1.7e-3, xwds =4.6e-2,

xwdb =1.0e-2, xdsds= -1.0e-2, xdbdb= -8.0e-3,
xdrdr =-1.0e-2, xqdsn= 2.0e-3, xwdsn =3.5e-3,

xdsdsn= -1.6e-3;

* lateral hydrodynamic coefficients

const double
ypdot = 1.2e-4, yrdot = 1.2e-3, ypq = 4.0e-3,
yqr = -6.5e-3, yvdot = -5.5e-2, yp = 3.0e-3,
yr =3.0e-2, yvq =2.4e-2, ywp = 2.3e-1,
ywr = -1.9e-2, yv =-1.0e-1, yvw = 6.8e-2,
ydr = '2.7e-2, cdy =3.5e-1;

* normal hydrodynamic coefficients

const double
zqdot = -6.8e-3, zpp =1.3e-4, zpr =6.7e-3,

zrr = -7.4e-3, zwdot= -2.4e-1, zq = -1.4e-1,
zvp = -4.8e-2, zvr = 4.59-2, zw = -3.0e-1,
zvv = -6.8e-2, zds = -7.3e-2, zdb = -2.6e-2,
zqn = -2.9e-3, zwn = -5.1e-3, zdsn = -1.0e-2,
cdz = 1.0;
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* roll hydrodynamic coefficients

const double
kpdot =-1.0e-3, krdot = -3.4e-5, kpq = -6.9e-5,
kqr = 1.7e-2, kvdot = 1.3e-4, kp = -1.1e-2,
kr -- 8.4e-4, kvq = -5.1e-3, kwp = -1.3e-4,
kwr = 1.4e-2, kv = 3.le-3, kvw = -1.9e-1,
kpn =-5.7e-4, kdb = 0.0;

* pitch hydrodynamic coefficients

const double
mqdot = -1.7e-2, mpp = 5.3e-5. rnpr = 5.0e-3,
mrr = -2.9e-3, mwdot =-6.8e-3, mq =-6.8e-2,

mvp = 1.2e-3, mvr 1 .7e-2, mw = 1.0e-1,
mvv = -2.6e-2, mds =-4.1e-2, nidb = 6.9e-3,
rnqn = -1.6e-3, mwn =-2.9e-3, mdsn =-5.2e-3;

* yaw hydrodynamic coefficients

const double
npdot =-3.4e-5, nrdot = -3.4e-3, npq = -2.le-2,
nqr = 2.7e-3, nvdot = 1.2e-3, np = -8.4e-4,
nr =-1.6e-2, nvq = -1.0e-2, nwp = -1.7e-2,
nwr = 7.4e-3, nv = -7.4e-3, nvw = -2.7e-2,
ndr -- 1.3e-2;

* mass characteristics of the flooded vehicle

const double
weight = 12000.0, boy = 12000.0, vol = 200.0,
xg = 0.0, Y9 = 0.0, zg = 0.20,
xb = 0.0, zb = 0.0, ix =1500.0,

iY = 10000.0, iz = 10000.0, ixz = -10.0,
iyz = -10.0, ixy = -10.0, yb = 0.0,
1 = 17.4, rho = 1.94,g = 32.2,
flu = 8.47e-4,aO = 2.0, kprop = 0.0,
nprop = 0.0, xltest = 0.1,
degrud =0.0, degstn = 0.0;
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* define length fractions for gauss quadrature terms

conat double
g4[] = 0.069431844, 0.330009478, 0.669990521,

0.930568155 },
gk4[] = {0.1739274225687, 0.3260725774312,

0.3260725774312, 0.1739274225687 }

* define the breadth bb and height hh terms for the
* integration

const double
br[] = (75.7/12.0, 75.7/12.0, 75.7/12.0, 55.08/12.0},
hh[] = {16.38/12.0, 31.85/12.0, 31.85/12.0, 23.76/12.0};

* assemble inverted mass matrix

const double
xznminv[6][61 = f

{0.2431e-2, 0.2701e-8, 0.1899e-5, 0.1649e-7,
-0.5023e-5, 0.3243e-8 },

f 0.2679e-8, 0.1537e-2, 0.5593e-8, 0.4276e-4,
-0.1479e-7, 0.1057e-4 },

f 0.1899e-5, 0.5639e-8, 0.6293e-3, 0.3443e-7,
-0.1049e-4, 0.6770e-8 },

{0.1649e-7, 0.4321e-4, 0.3443e-7, 0.3294e-3,
-0.9106e-7, -0.1049e-5 },

{-.5023e-5, -.1491e-7, -.1049e-4, -.9106e-7,
0.2773e-4, -0.1790e-7 },

{0.3243e-8, 0.1057e-4, 0.6769e-8, -.1052e-5,
-0.1790e-7, 0.6561e-4}
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% File GETMEAS2.M

% simulates accelerometer and rate gyro
% measurements using the nonlinear model as the
% vehicle. Additive white Gaussian noise included

% Called by SIMUL9.M

% Ver.3 Includes gyro biases, and depth rate meas.

% no speed log measurement

function [anglerate,Z,Zdot,accel,hdg]=getmeas3(new,Zold,dt)

rand( 'normal');

% depth measurement
Z = new(9)+le-3*rand;

% time rate of change of depth
Mdot = (Z - Zold)/dt;

% simulated noise and bias on rate gyro
Vp=0. 003*rand;
Vq=0.003*rand;
Vr=0. 003 *rand;
pBias = 0.10; qBias =0.200; rBias = -0.25;

% rate gyro readings
anglerate(1,l)=new(4) + pBias + Vp;
anglerate(2,1)=new(5) + qBias + Vq;
anglerate(3,1)=new(6) + rBias + Vr;

% accelerometer measurement of gravity (down is positive)
g= [0; 0;32.'2];

% transform gravity vector to body coordinates to subtract
phi=new( 10); % Euler roll angle
the=new( 11); % Euler elevation/dive angle
psi=new( 12); % Euler azimuth/heading

% calculate the tranformation matrix
R(1,1) = cos(psi)*cos(the);
R(2, 1) = cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi);
R(3,1) = cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi);
R(1,2) = sin(psi)*cos(the);
R(2,2) = cos(psi)*cos(phi)+sin(psi)*sin(the)*sin(phi);
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R(3,2) = -cos(psi)*sin(phi)+sin(psi)*sin(the)*cos(phi);
R(1,3) = -sin(the);
R(2,3) = cos(the)*sin(phi);
R(3,3) = cos(the)*cos(phi);

accel = -R*g + O.00025*rand(3,1);

% simulated accelerometer dead zone
if (abs(accel(1)) < 0.4)

accel(1) = 0.0;
end;
if (abs(accel(2)) < 0.4)

accel(2) = 0.0;
end;

hdg =psi;
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% File MAKMEAS3.M

% transforms the observer states into measurements
% using nonlinear measurement equation.

*% Called by SIMUL9.M

% Ver.3 corresponds with getmeas2

function [modmeas ]=makmeas2 (new, old, dt)

modmeas = zeros(9,1);

modmeas(1) = new(4) + new(13); % rate gyro
modmeas(2) =new(5) + new(14); % and bias estimate
modmeas(3) = new(6) + new(15);
modmeas(4) =new(9); % depth
modmeas(5) = (new(9)-old(9))/dt; % depth dot

% gravity (down is positive)
g=0; 0;32.2];

% transform gravity vector to body coordinates to subtract
phi=new( 10); % Euler roll angle
the=new(ll); % Euler elevation/dive angle
psi=new( 12); % Euler azimuth/heading

% calculate the tranformation matrix
R(1, 1)=cos(psi)*cos(the);
R(2, 1)=cos(psi)*sin(the)*sin(phi).-sin(psi)*cos(phi);
R(3, l)=cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi);
R(1,2)=sin(psi)*cos(the);
R(2,2)=cos(psi)*cos(phi)+sin(psi)*sin(the)*sin(phi);
R(3,2)=-cos(psi)*sin(phi)+sin(psi)*sin(the)*cos(phi);
R(1,3)=-sin(the);
R(2,3)=cos(the)*sin(phi);
R(3,3)=cos(the)*cos(phi);

modmeas(6:8)=-R*g; % accelerometer meas

modxneas(9)= psi;
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% File KALM.M

Time varying Kalman Filter subroutine
for predictor-corrector formulation of filter

% Called by SIMUL9.M, AUVSIM.M, MAKEK.M

function [K, PnewJ = kalm(Phi, Del, C, Pold,W,V)

% update Pold
P=Phi*Pold*Phi' +Del*W*Del';

% calculate new gain matrix
K=P*C'*inv( [C*P*C'+V]);

% complete update of P with new K matrix
Pnew=(eye(Phi)-K*C)*P;
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APPENDIX B

Program Listing for Experimental NPS AUV II Study

% File AUVSIM7.M

% Structured as SIMUL.M but this uses
% recorded data from the NPS AUV 2 vehicle.

% Calls AUV2.M, GETMEAS.M, MAKMEAS.M
% MAKEK.M, GETK.M

% Modified 18 Nov 91

% Ver.2 added rate gyro bias terms to observer

% Ver.3 removed speed log measurement
% and added accelerometer dead zone

% Ver.4 modified to use recorded vehicle data
% and simulating accelerometer data from
% vertical gyro data

% Ver.5 using gyro data directly and added bias term for
% pitch gyro

% Ver.6 augment state to estimate
% error in u using an input rpm bias as a state

% Ver.7 using piecewise constant Extended Kalman filter
% gain matrix. (and'drop rpm bias)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% dt = sample interval

% load recorded data into memory. File obtained from
% NPS AUV Group
load dat8262.d
data = dat8262;
clear dat8262;

% Set initial state based on data and estimated conditions
X = data(l,2);
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Y = data(1,3);
Z = data(1,4);
rpm = 550;
uO = 0. 0;
wo = 0. 0;
pitchrate = data(1,9);
pitch = data(1,6);
heading = data(1,7);
phiO = 0.0;
the0 = pitch;
psiO = heading;
initial state =
[uO;0;wO;0;pitchrate;0;X;Y;Z;0;pitch;heading];

% Set sample interval and run time based on data set
dt = data(2,1)-data(1,1);
Tf = data(length(data),1)-data(1,l);

% Set up disturbance and measurement noise covariance
% matrices
% (prepare to leave out X and Y terms from Kalman filter)
Q = zeros(14);
Q(1:10,1:10) = 0.05*eye(10);
Q(1,1) =1.0;

Q(9,9) =.05;

Q(11:14,11:14) = 0.0005*eye(4); %gyro bias rand walk

% Measurement noise covariance matrix
% off diagonal terms for correlation between forward
% speed, pitch and depth rate.
R=.01*eye(7);
R(1,5) =0.001;

R(5,1) =R(1,5);

R(6,6) =.005;

R(5,5) =0.05;

R(5,6) =0.001;

R(6,5) =R(5,6);

R(7,7) =0.0001;

% Initialize vectors for simulation
imax =Tf/dt + 1;
navig = zeros(16,imax);
navig(:,1) = [initial state;0;0;0;0J;

% Make block row matrix of steady state
% Extended Kalman filter gain matrices for table lookup
% the gain will be a function of u and theta

uRange = [1.5;2.0];
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thtRange = (-0.05;-0.025;0.0;0.025;0.05];

aliK = makeK(uRange,thtRange,Q,R,dt);

meas = zeros(7,1);

disp( 'Navigation Begins ...'1)
tO=clock;

for (i=1:imax)

rpm = ((data(i,17)+data(i,18) )/2);
inputm = ...

[data(i,11) ;-data(i,11) ;data(i, 12) ;-data(i, 12) ;rpm];

uhat = navig(1,i);
thetahat = navig(11,i);

% Look up proper steady state K matrix for the current
% estimated state
K = getK(allK,uhat,thetahat,uRange,thtRange);

% Format measurement from data file
[rategyro,Z,Zdot,pitch,hdg]=getmeas5(data(i,:),Z,dt);
meas = [rategyro;Z;Zdot;pitch;hdg];

% Calculate next navigator prediction
navig(1:12,i+1) =auv2(navig(1:12,i) ,inputm,dt);
navig(13:16,i+1) =navig(13: 16,i);

% Generate predicted measurements
modmeas(:,i+1) = makmeas3(navig(:,i+l),navig(:,i),dt);

% Calculate correction using Kalman gain
esterr(:,i) = K*(meas-modmneas(:,i+l));

% Correct navigator prediction
navig(:,i+1)=..

navig(:,i+l)+(esterr(1:6,i);O;O;esterr(7:14,i)];

end;

etime (clock, tO)
pause
axis((O 117 0 65));

% Generate graphical output

Idel expxy.met;

plot(data(:,2)+20,data(:,3)+15,navig(7,:)+20,navig(8,:)+15);
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grid;xlabel('X - feet');ylabel('Y - feet');grid;pause;
meta expxy;

axis;
t = data(1,1):dt:data(length(data),1)+dt;

Idel expu.met;
plot(data(:,1),data(:,15),t,navig(1,:));grid;
ylabel( 'feet/sec' );xlabel( 'seconds' );pause;
meta expu;

Idel expv.met;
plot(t,navig(2, : ));grid;
xlabel( 'seconds' );ylabel( 'feet/sec' );pause;
meta expv;

Idel expw.met;
plot(t,navig(3, : ));grid;
xlabel( 'seconds' );ylabel( 'feet/sec' );pause;
meta expw;

!del expp.met;
plot(data( :,1),data( :,8) ,t,navig(4,: ) );grid;
xlabel( 'seconds' );ylabel( 'radians/sec' );pause;
meta expp;

Idel expq.met;
plot(data(:,1),data(:,9),t,navig(5,:));grid;
xiabel( 'seconds' );ylabel( 'radians/sec' );pause;
meta expq;

Idel expr.met;
plot(data(:,l),data(:,1O),t,navig(6,:));grid;
xlabcl( 'seconds' );ylabel( 'radians/sec' );pause;
meta expr;

.Idel expz.met;
plot(data(:,1),data(:,4),t,navig(9,:));gild;
xlabel ('seconds' ) ;ylabel( 'feet' ) ;pause;
meta expz;

Idel expphi.met;
plot(data(:,1),data(:,5),t,navig(1O,:));grid;
xlabel( 'seconds' );ylabel( 'radians' );pause;
meta expphi;

I del exptheta .met;
plot(data(:,1),data(:,6),t,navig(11,:));grid;
xlabel( 'seconds' );ylabel( 'radians' );pause;
meta exptheta;
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Idel exppsi.met;
plot(data(:,1) ,data( :,7) ,t,navig( 12,:)) ;grid;
xlabel( 'seconds' );ylabel( 'radians' );pause;
meta exppsi;

Zdel exppbias .met;
plot(t,navig( 13,:) );grid;
xlabel( 'seconds' );ylabel( 'radians/sec' );pause;
meta exppbias;

Idel expqbias .met;
plot(t,navig( 14,:) );grid;
xlabel( 'seconds' );ylakel( 'radians/sec' );pause;
meta expqbias;

I del exprbias met;
plot(t,navig( 15,:)) ;grid;
xlabel( 'seconds' );ylabel( 'radians/sec' );pause;
meta exprbias;

Idel expthbia.met;
plot(t,navig(16, : ));grid;
xlabel( 'seconds' );ylabel( 'radians' );pause;
meta expthbia;
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/*********************************************

* File AUV2.C

* C language source code for AUV2.MEX. Must be
* compiled within MEX subdirectory of MATLAB.
* It is used like a MATLAB function:
*

* function state = auv2(oldstate,inputs,dt)
*

* Translated to C for MEX file use from SIM3D,
* a FORTRAN based AUV2 model written
* by Prof. Fotis Papoulias and CDR David Warner,
* NPS, Monterey, CA. It is based on modified
* equations of motion from NSRDC Report 2510
* June, 1967.

* Called by AUVSIM7.M

#include <math.h>
#include "auv2prm.h"
#include "tcmex.h"

double trapz( int n, double *a, const double *b );

int auv2( double *state, double *oldstate, double *inputs,
double *dt );

/*
* This is the code recognized by MATLAB
* it calls function AUV2
*/

void user fcn( int nlhs, Matrix *plhs[], int nrhs, Matrix
*prhs[]
{

double *oldstate, *inputs, *dt, *state;

if (nrhs 1= 3)
mex error("Must be three input arguments.");

if (nlhs 1= 1)
mex error("Must be one output argument.");

if (ROWSIN(0) 1= 12 ,' COLS_IN(0) 1= 1)
mex error("Previous state vector not correct size.");

if (ROWS_IN(l) 1= 5 :: COLS_IN(1) 1= 1)
mex error("Input vector not correct size.");

if (ROWSIN(2) 1= 1 ', COLS_IN(2) 1= 1)
mexerror("Time interval must be a scalar.");
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plhs[O] =create-matrix(12,1,REAL);
state = QUT(O);
oldstate = IN(O);
inputs = IN(1);
dt =IN(2);

auv2(state,oldstate,inputs,dt);

*This code is the nonlinear model for NPS AUV II

mnt auv2( double *state, double *oldstate, double *inputs,
double *dt)

int j, k;
int flag = 0;
double u, v, w. p, q, r. phi, theta, psi;
double drs, drb, ds, db, rpm, delt;
double uv, ssas, ssab, drss, drbs;
double mass, heave, pitch, sway, yaw;
double ucf, cf low;
double tmpl, tmp2;
double vechl[15], vech2[15], vecvl[15], vecv2[15];
double fp[6], f[12];
double cos-theta, sin-theta, tan-theta;

*double cosphi, sinphi, cospsi, sinpsi;

u = oldstate[O];
v = oldstate[1];
w = oldstate[2];
p = oldstate[3];
q = oldstate[4];
r = oldstate[5];
phi = oldstate[93;
theta = oldstate[1O];
psi = oldstatetll];

drs = inputs[0];
drb = inputs(l];
ds = inputs[2];
db = inputs(3];
rpm = inputs(4];

delt = *dt;

mass = weight/g;
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" calculate the drag force, integrate the drag over
* the vehicle integrate using a 15 term trapezoidal
" numerical integratiin

for (k=O; k<15; ++k){
tmpl = (v+xx~k]*r);
tmp2 = (w-xx~k)*q);
ucf = sqrt(fabs(tmpl*tmpl+tmp2*tmp2));
if(ucf < 1.0e-6){

flag = 1;
break;
I

cf low =fabs((cdy*hh~k]*tmpl*tmpl +
cdz*brfk)*tmp2*tlp2)/ucf);

vechl~k] = cflow*tmpl;
vech2[k) = vechl[k]*xx[k);
vecvl~k] = cflow*tmp2;
vecv2[k] = vecvl~k]*xx[k];

if (flag == 1){
heave = 0.0;
pitch = 0.0;
sway = 0.0;
yaw = 0.0;
I

else{
heave = trapz(15,vecvl,xx);
pitch = trapz(15,vecv2,xx);
sway = trapz(15,vechl,xx);
yaw = trapz(15,vech2,xx);
heave = -rho*heave/2.0;
pitch = +rho*pitch/2.0;
sway = -rho*sway/2.0;
yaw = -rho*yaw/2.0;

* force equations

* common sub-expressions

ssas = 0.0;
ssab = 0.0;
uv = u;
drss = drs - ssas;
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drbs = drb -ssab;
COB-theta = cos(theta);
sin -theta = sin(theta);
tan-theta = tan(theta);
cosphi = cos(phi);
sinphi = sin(phi);
Cos-psi = cos(psi);
sinpsi = sin(psi);

if (phi == 0.0 ) {sinphi =0.0;}

if (theta == 0.0) {sin theta = 0.0; tan_theta =0.0;}

if (psi == 0.0 ) sinpsi = 0.0; 1

* longitudinal force

fp[O) = mass*v*r - mass*w*q + mass*xg*q*q
" mass*xg*r*r - mass*yg*p*q - mass*zg*p*r
" xpp*p*p+xqq*q*q + xrr*r*r+xpr*p*r
+ xwq*w*q+xvp*v*p+xvr*v*r+u*q* (xqds*ds+xqdb*db)
" u*r*(xrdrs*drss + xrdrb*drbs)
" xvv*v*v+xww*w*w + u*v*(xvdrs*drss+xvdrb*drbs)
" u'~w*(xwdS*ds+xwdb*db)
" uv*uv* (xdsds*ds*ds+xdbdb*db*db
+ xdrdr*(drss*drss+drbs*drbs))

-(weight-boy)*sin-theta + rpm*rpm*xprop - u*u*xres;

* lateral force

fp[1] = -mass*u*r - mass*xg*p*q + mass*yg*r*r
- mass*zg*q*r + ypq*p*q + yqr*q*r + yp*u*p + yr*u*r
" yvq*v*q + ywp*w*p
" ywr*w*r +t yv*u~v + yvw*v*w + ydrs*uv*uv*drss
+ ydrb*uv*uv*drbs + (weight-boy)*cos_theta*sin-phi
+ mass*w*p + mass*yg*p*p + sway;

* normal force

fp(2] = mass*u*q - mass*v*p - mass*xg*p*r - mass*yg*q*r
" mass*zg*p*p + mass*zg*q*q + zpp~p~p + zpr*p*r
+ zrr*r*r + zq*u*q +t zvp*v~p + zvr*v*r +t zw~u~w
+ zvv~v~v ft u*u*(zds*ds+zdb*db)
" (weight-boy)*cos-theta*cosphi
" heave;
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* roll moment

fp[3] = -iz*q*r + iy*q*r - ixy*p*r + iyz*q*q
- iyz*r*r + ixz*p*q + mass*yg*u*q - mass*yg*v*p
- mass*zg*w*p + kpq*p*q + kqr*q*r + kp*u*p + kr*u*r
" kvq*v*q + kwp*w*p + kwr*w*r + kv*u*v + kvw*v*w
" (yg*weight - yb*boy)*cos -theta*cosphi
- (zg*weight - zb*boy)*cos-theta*sin~yhi +

mass*zg*u*r;

* pitch moment

fp[4J = -ix*p*r + iz*p*r + ixy*q*r - iyz*p*q - ixz~p~p
+ ixz*r*r - mass*xg*u*q + mass*xg*v*p + mass*zg*v*r
- mass*zg*w*q + mpp*p*p +mpr*p*r +mrr*r*r + mq*u*q
" mvp*v*p + mvr*v*r + mw*u*w + mvv*v*v
" u*u*(mds*ds+mdb*db)
- (xg*weight-xb*boy) *cos -theta*cosphi
- (zg*weight-zb*boy)*sil-theta + pitch;

* yaw moment

fp[5] = ...iy*p*q + ix*p*q + ixy~p~p - ixy*q*q + iyz*p*r
- ixz*q*r - mass*xg*u*r + mass*xg*w*p - mass*yg*v*r
" mass*yg*w*q + fpq*p*q + nqr*q*r + np*u*p + nr*u*r
" nvq*v*q + nwp*w*p + nwr*w*r + nv*u*v + nvw*v*w
" ndrs*uv*uv*drss + ndrb*uv*uv*drbs + (xg*weight
- xb*boy)*cos_theta*sin-phi
+ (yg*weight-yb*boy)*sil-theta + yaw;

* now compute the f(O-5) functions

for (j=O; j<6; ++j)
for (f~j]=O.O,k=O; k(6; ++k)

f[j] += xmminv[j][kJ*fp[k];

* the last six equations come from the kinematic
* relations
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* inertial position rates f(6-8)

f(6] =u*cospsi*cos -theta + v*(cospsi*sin Itheta*
sinphi - sinpsi*cosphi) + w*(cospsi*sin-theta*
cosphi + sinpsi*sinphi);

f[7] = u*sinpsi*cos -theta + v*(sinpsi*sin Itheta*
sinphi + cospsi*cosphi) + w*(sinpsI~snte
cosphi - cospsi*sinphi);

f[8] = -u*sin-theta + v~cos-theta*sinphi +
w*cos-theta*cosphi;

* euler angle rates f(9-11)

f[9] =p + q*sinphi*tan -theta + r*cosphi*tan-theta;
f[10] =q*cosphi - r*sinphi;
f(11] =q*sinphi/cos-theta + r*cosphi/cos_theta;

* first order integration

for (j=O; j(12; j++)
state~j] = oldstate[j] + delt * j]

return 0;

*This function performs a trapezoidal integration

double trapz( mnt n, double *a, const double *b)
mnt n1, k;
double y;
n1 = n-i;
for (y = 0.0, k=0; k~nl; k++){

y += (a[k] + a[k+1])*(b[k+1]-b~k])/2;
I
return y;
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*File AUV2AB.C

* C language scurce code for AUV2AB.MEX. Must be
* compiled within MEX subdirectory of MATLAB.
* It is used like a MATLAB function:

* function [A,B] = auv2AB(state,inputs)

* Based on Taylor series expansion of the equations
* of motion in AUV2.C

*Called by AUVSIM7.M

#include <math.h>
#include "tcmex. h"
#include "auv2prm. h"

void makeab( double *A, double *B, double *state, double
*inputs);

" This section of code is recognized by MATLAB
" It cails function MAKEAB

void user -fcn( mnt nlhs, Matrix *plhs[], mt nrhs, Matrix
*prhs[]

double *state, *inputs, *a, *b;

if (nrhs 1= 2)
mex -error("Must be two input arguments");
if (nlhs 1= 2)
mex_error("Must be two output arguments");

if (ROWSIN(O) 1= 12 11 COLSIN(O ) 1= 1)
mex Ierror("Initial state vector must have 12 states");
if (ROWSIN(1) 1= 5 11COLSIN(1) 1= 1)
mex-error("Input vector must have 5 elements");

plhs[O] = create -matrix(12,12,REAL);
plhs[1] = create-matrix(12,5,REAL);
a = OUT(O);
b =OUT(1);
state =IN(O);

inputs =IN(1);

makeab(a,b,state,inputs);
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*This code makes the linearized model.

void makeab( double *A, double *B, double *state, double
*inputs)

int i, j, k;
double a[l2)[12), b[6)[5);
double aa[12][12],bb[12](5];
double uO, vO, wO, p0, gO, rO, phiO, thetao, psiO;
double mass;
double drs, drb, ds, db, rpm;
double cos -theta, sin_theta, tan-theta;
double cosphi, sinphi, cospsi, sinpsi;

1* assign some common variable names *

uO = state(O];
vO = state~l];
wO = state[2];
p0 = state[3];
qO = state[4];
rO = state[5];
phiO = state[9];
thetaO = state[I0];
psiD state[11];

drs =inputs[O];

drb =inputs[l);

ds =inputs[2];

db =inputs[3];

rpm =inputs[4];

cos theta = cos(thetaO);
sin theta = sin(thetaO);
tan theta = tan(thetaO);
cosphi = cos(phiO);
sinphi = sin(phiO);
C05-psi = cos(psiO);
sinpsi = sin(psiO);

if (thetao == 0.0) f sin-theta =0.0; tan-theta 0 ;j
if (phiO = 0.0) sinphi = 0.0;
if (psio = 0.0) sinpsi = 0.0;

mass = weight/g;
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1* initialize a, b, aa, and bb *

for (j=0; j<12; j++)
for (k=0; k<12; k++)

a~j][k] = 0.0;

for (j=0; j<6; j-H-)
for (k=0; k<5; k++)

b[j][k] = 0.0;

for (j=0; j<12; j++)
for (k=0; k.<12; k+i+)

aa[j](k] = 0.0;

for (j=0; j<12; j++)
for (k=0; k<5; k++)

bb[j][k] = 0.0;

/* Build the 12x12 a matrix *

1* d(long. force)/dx */

a[0] [0]= qO*(xqds*ds+xqdb*db)+rO*(xrdrs*drs+xrdrb*drb)+
v0*(xvdrs*drB+xvdrb*drb)+w0* (xwds*ds+xwdb*db)+
2*uO* (xdsds*ds*ds+xdbdb*db*db+
xdrdr* (drs*drs+drb*drb) ) 2*xres*u0;

a[ 0][1] = mass*rO+xvp*pO+xvr*rO+2*xvv*vO+
uO* (xvdrs*drs+xvdrb*drb);

af0] [2]= -mass*q0+xwq*q0+2*xww*w0+u0*(xwds*ds+xwdb*db);
a[01 [3]= -mass*yg*q0O-mass*zg*r0+2*xpp*p0+xpr*r0+xvp*v0;
a[0J [4]= -.mas*w+2*mass*xg*q0-mass*yg*p0+2*xqq*q0+

xwq*wO+uO* (xqds*ds+xqdb*db);
a 0] [5]= rass*v0+2*mass*xg*r0-mass*zg*p0+2*xrr*r0+xpr*p0+

xvr*v0+uO* (xrdrs*drs+xrdrb*drb);
a[0][10]=-~(weight-.boy)*cos_theta;

1* d(lat. force)/dx */

a[ 1] [0]=-mass*r0+yp*p0+yr*r0+yv*v0+2*u0* (ydrs*drs+ydrb*drb);
a[l1][1]= yvq*qO+yv*uo+yvw*wo;
a[1] [2]= 18sB*p0+ywp*pO+ywr*rO+yvw*vO;
a[l][3J=
mass*w0-maBss*xg*qO+2 *masB*yg*po+ypq*qO+yp*uO+ywp*wO;
a[l 1] 4=-masB*xg*p0-mass*zg*r0+ypq*p0+yqr*r0+yvq*v0;

-mass*u0+2*mass*yg*r0-mass*zg*q0+yqr*qO+yr*u0+ywr*w0;
a[1][9]= (weight-boy)*cos -theta*cosphi;
a[1l[10]=-(weight-boy)*sin theta*sinphi;
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1* d(norm. force)/dx *

a[2][O]= mass*qO+zq*qO+zw*wO+2*uO*(zds*ds+zdb*db);
a[2] [1]=-mass*po+zvp*pO+zvr*rO+2*zvv*vO;
a(2)[2]= zw*uO;
a[2][3]=-mass*vO-mass*xg*rO+2*mass*zg*pO+2*zpp*pO+

zpr*rO+zvp*vO;
a[2][4]= mass*uO-mass*yg*rO+2*mass*zg*qO+zq*uO;
a[2] [5]=-mass*xg*pO-mass*yg*qO+zpr*pO+2*zrr*rO+zvr*vO;
a[2] [9]=-(weight-boy)*cos_theta*sinphi;
a[2J[1O]=-(weight-boy)*sintheta*cos.phi;

/* d(roll moment)/dx *

a[3] [O]= mass*yg*qO+mass*zg*rO+kp*pO+kr*rO+kv*vO;
a[ 3] [1]=-mass*yg*pO+kvq*qO+kv*uO+kvw*wO;
a[3] [2 ]=-mass*zg*pO+kwp*pO+kwr*rO+kvw*vO;
a[3] (3]=-ixy*rO+ixz*qO-mass*yg*vO-mass*zg*wO+

kpq*qO+kp*uO+kwp*wO;
a[3] [4]=-iz*rO+iy*rO+2*iyz*qO+ixz*pO+mass*yg*uO+

kpq*pO+kqr*rO+kvq*vO;
a[3][5]=-iz*qO+iy*qO-ixy*pO-2*iyz*rO+nass*zg*uO+

kqr*qO+kr*uO+kwr*wO;
a[3] [9 ]=-(yg*weight-yb*boy)*cos theta*siflphi-

(zg*weight-zb*boy) *cos theta*cos.phi;
*a[3J [10 J=.(yg*weight-yb*boy)*sin -theta*cosphi+

(zg*weight-zb*boy) *sin-theta*sinphi;

/* d(pitch moment)/dx *

a[4J [O]=-mass*xg*qO+mq*qO+mw*wO+2*uO*(mds*ds+mdb*db);
a[4J [1)= mass*xg*pO+mass*zg*rO+mvp*pO+mvr*rO+2*mvv*vO;
a[4J [2]=-mass*zg*qO+mw*uO;
a[4J [3]=-ix*rO+iz*rO-iyz*qO-2*ixz*pO+mass*xg*vO+

2 *mpp*pO+mpr*rO+mvp*v0;
a[4] [4]= ixy*rO-iyz*pO-mass*xg*uO-mass*zg*wO+mq*u0;
a[4J[5]=-ix*pO+iz*pO+ixy*qO+2*ixz*rO+mass*zg*v0+

mpr*pO+2 *mrr*rO+mvr*vO;
a[4] [9]= (xg*weight-xb*boy)*cos theta*sinphi;
a[4][1O]=(xg*weight-xb*boy)*sin theta*cosphi-

(zg*weight-zb*boy) *cos-theta;

1* d(yaw moment)/dx *

a[ 5] [0]=-mass*xg*rO+np*pO+nr*rO+nv*v0+
2*uO* (ndrs*drs+ndrb*drb);

a[5] [l]=-mass*yg*rO+nvq*qO+nv*uO+nvw*wO;
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a(5] (2]= mass*xg*pO+mass*yg*qO+nwp*pO+nwr*rO+nvw*vO;
a[5] [3]=-iy*qO+ix*qO+2*ixy*pO+iyz*rO+mass*xg*wO+

npq*qO+np*uO+nwp*wO;
a[5] [4]=-iy*pO+ix*pO-.2*ixy*qO..ixz*rO+mass*yg*wO+

npq*pO+nqr*rO*nvq*vO;
a[5] [5]= iyz*pO-ixz*qO-mass*xg*uO-mass*yg*vO+

nqr*qO+nr*uO+nwr*wO;
a[5] (9]= (xg*weight-.xb*boy)*costheta*cosphi;
a[5] [1O]=-(xg*weight-xb*boy)*sin-theta*sinphi+

(yg*weight..yb*boy) *cos theta;

/* d(inertial position X)/dx *

a[6][O]= cospsi*cos-theta;
a[6][1]= cospsi*sin-theta*sinphi-sinpsi*cosphi;
a[6] [2]= cospsi*sin-theta*cos~phi+sinpsi*sinphi;
a[6][9]= vO*(cospsi*sin -theta*cos~phi+sin~psi*sinphi)+

wO*(-cos~jpsi*sin -theta*sinphi+sinpsi*cosphi);
a[6] [1O]=-uO*cospsi*sin-theta+vO*cospsi*cos-theta*

sin-phi+wO*cospsi*cos-theta*cosphi;
a[6J(12.=uO*sinpsi*cos -theta-vO*(sinpsi*sin-theta*sin-phi

+cos-psi*cosphi) +
wO*(-sinpsi*sin theta*cosphi+cospsi*sinphi);

1* d(inertial postion Y)/dx *

a[7J(O]= sinpsi*cos_theta;
a[7][1]= sin~psi*sin-theta*sinphi+cospsi*cosphi;
a[7][2]= sinpsi*sin theta*cosphi-cospsi*sinphi;
a(7][9]= vO*(sinpsi*sin -theta*cosphi-cospsi*sinphi)-

wO*(sinpsi*sin -theta*sinphi+cospsi*cos.phi);
a[7] [1O]=-uO*sinpsi*sin theta+vO*sin-Psi*cos-theta*sin-Phi+

wO*sinpsi*cos theta*cosphi;
a[7](11]= uO*cospsi*cos theta+

vO*(cospsi*sjn -theta*sinphi-
sin-psi*cosphi)+
wO*(cosypsi*sin-theta*cosphi+sinpsi*sinphi);

1* d(depth)/dx *

a[8][O]=-sin-theta;
a[8][1]= cos-theta*sinphi;
a(8](2]= cos-theta*cosphi;
a(8][(9]J= vO*cos -theta*cosphi-wO*cos-theta*sinphi;
a[8][1O]=-uO*cos -theta-vO*sin Itheta*sinyphi-

wO*sin-theta*cosphi;
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1* d(roll angle)/dx *

a[9] [3]=1;
a[9] (4]=sinphi*tan theta;
a(9] [5]=cosphi*tan_theta;
a[9][9]=qO*cosyphi*tan-theta-rO*sinphi*tan_theta;
a(9](1O]=(qO*sinphi+rO*cosphi)/cos-theta*l/cos theta;

1* d(pitch angle)/dx *

a[1OJ (4]=cosphi;
a(1OJ (5]=-sinphi;
a[1O] (9]=-qO*sinphi-rO*cosphi;

1* d(yaw angle)/dx *

a[11] [4]=sinphilcos_theta;
a[ll] [5]=cosphilcos_theta;
a(11] [9]=qO*cosphi/cos-theta-rO*sinphi/cos_theta;
a(11](1O]=(qO*sinphi+rO*cosphi)/cos-theta*tan-theta;

/* Build the 12x5 b matrix *

1* d(long force)/d(inputs) *
4[]O=xdsu~Oxdsu~O2u~Oxrrds

b[OJ(O]= xrdrs*uO*rO+xrdrb*uO*vO+2*uO*uO*xdrdr*drs;
b[O][2]= xrd*O*rOxrdb*O*v+2*uO*uO*xdd*dr;
b[OJ(2]= uO*qO*xqds+uO*wO*xwds+2*uO*uO*xdsds*ds;

b(0fl4]= 2*xprop*rpm;

/* d(lat force)/d(inputs) *

b(1][O]= ydrs*uO*uO;
b(1](1]= ydrb*uO*uO;

1* d(normal force)/d(inputs) *

b[2](2]= uO*uO*zds;
b[2][3]= uO*uO*zdb;

/* d(roll moment)/d(inputs) *

b(3][3]= 0;
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1* d(pitch moment)/d(inputs) *

b(4](2]= uO*uO*mds;

b[4](3]= uO*uO*mdb;

/* d(yaw moment)/d(inputs) *

b[5][OJ= ndrs*uO*uO;

b[5][1]= ndrb*uO*uO;

/* Multiply the appropriate parts of both by the inverted
* mass matrix

*inv(mass matrix)*df/dx

fo i=;i6;i+

for (j i<; i<; ++)
for (=j(; k<;j++)

aa~iflj] += xmm~inv~i][k]*a[k][j);

*inv(mass matrix)*df/dz

for (i=O; i<6; i++)
for (j=6; j<12; j++)

for (k=O; k<6; k-H-)
aa~i)[j) += xmminvti)[k]*a~k][j];

for (i=6; i<12; i++)
for (j=O; j<12; j++)

aa(i][j] = a[i]lj];

*inv(mass matrix)*df/du

for (i=O; i<6; i++)
for (j=O; j<5; j++)

for (k=O; k<6; k++)
bb~iflj] += xmminv~i](k]*b[k][j];

*reorganize the matrices for use by Matlab
*which stores matrices columnwise vice rowwise

fo*j1 j1;j+

for (=j1; ij2 ++)
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A[i+12*j] = aa(i)[j];

for (j=O; j<5; j++)
for (i=O; i<12; i++)

B[i+12*j] =bb(i]lj];
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/ ***********************************************

* File AUV2PRM.H

* This file contains all of the parameter
* coefficients used by the file AUV2.C
* and AUV2AB.C.
* The format is identical to that in MODELPRM.H
* which contains parameters for the Swimmer
* Delivery Vehicle

* These parameters were determined by
* Prof. Fotis Papoulias and CDR David Warner, NPS
* Monterey, CA.

/*

* define some constants for use in expressions
*/

#define trm2 1.94/2*87.625/12.0*87.625/12.0
idefine trm3 1.94/2"87.625/12.0"87.625/12.0"87.625/12.0

#define trm4
1.94/2*87.625/12.0*87.625/12.0*87.625/12.0*87.625/12.0

#define trm5
1.94/2*87.625/12.0*87.625/12.0*87.625/12.0*87.625/
12.0*87.625/12.0

#define lngth 87.625/12.0
#define urpm 2.5/550.0

/*
* mass characteristics of the vehicle
*/

const double
weight*= 435.0, boy 435.0, vol = 200.0,
xg = 0.125/12.0, yg = 0.0, zg = 0.05,
xb = 0.125/12.0, zb = 0.0, ix = 2.7,
iy = 42.0, iz = 45.0, ixz = 0.0,
iyz = 0.0, ixy = 0.0, yb = 0.0,
1 = 87.625/12.0,rho = 1.94, g = 32.2,
cd0 = 0.015,
cdy = 0.5, cdz = 0.6, rpmO= 550.0, uO = 2.5,
xrs = -0.377*lngth,xrb = 0.283*lngth;

* longitudinal hydrodynamic coefficients
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const double
xpp 0.0, xqq = 0.0, xrr -0~.0l735*trm4,
xpr = 0.0, xudot = -2.82e-3*trm3, xwq = 0.0,
xvp 0.0, xvr = 0.0, xqds = 0.0,
xqdb =0.0, xrdrs = 0.0, xrdrb = 0.0,
xvv = 4.Ol9e-2*trm2, xww = 0.0, xvdrs = 0.0,
xvdrb = 0.0, xwds = 0.0, xwdb = 0.0,
xdsds = -2.345e-3*O.4l7*trm2,
xdbdb = -2.345e-3*0.4l7*trm2,
xdrdr = -2.345e-3*0.417*trm2,
xres =0.015*trm2, xprop = 0.015*trm2*(urpm)*(urpm);

* lateral hydrodynamic coefficients

const double
ypdot =0.0, yrdot = -1.78e-~3*trm4, ypq = 0.0,
yqr = 0.0, yvdot = -3.43e-2*trm3, yp = 0.0,
yr = l.l87e-2*trmn3, yvq = 0.0, ywp = 0.0,
ywr = 0.0, YV = -3.896e-2*trn2,
YVW = 0.0, ydrs =2.345e-2*trm2,

ydrb =2.345e-~2*trm2;

* * normal hydrodynamnic coefficients

*const double
zqdot = .-2.53e-3*trm4, zpp = 0.0, zpr =0.0,

zrr = 0.0, zwdot = -9.34e-2*trm3, zq = --7.0l3e-2*trm3,
ZVP = 0.0, zvr = 0.0, zw = -l.5678e-l*trm2,
zvv = 0.0, zds = -2.345e-2*trm2, zdb =-2.345e-2*trm2;

* roll hydrodynamic coefficients

const double
kpdot = -2.4e-4*trm5, krdot = 0.0, kpq = 0.0,
kqr = 0.0, kvdot = 0.0, kp -5.4e-3*trm4,
kr = 0.0, kvq = 0.0, kwp = 0.0,
kwr = 0.0, kv = 0.0, kvw = 0.0;

* pitch hydrodynamnic coefficients
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const double
mqdot = -6.25e-~3*trm5, mpp = 0.0, mpr = 0.0,
mrr = 0.0, mwdot = -2.53e-3*trm4,
mq = -3.565e-.2*trm4, mvp = 0.0, mvr = 0.0,
mw = 5.122e-2*trm3, mvv = 0.0,
mds = -0.377*lngth*2.345e-2*trm2,
mdb = 0.283*lngth*2.345e-2*trm2;

* yaw hydrodynamic coefficients

const double
npdot = 0.0, nrdot = -4.7e-4*trm5, npq = 0.0,
nqr = 0.0, nvdot = -1.78e-3*trn4, np = 0.0,
nr = -1.022e-2*trm4, nvq = 0.0, nwp = 0.0,
nwr = 0.0, nv -7.69e-3*trm3, nvw = 0.0,
ndrs = .-0.377*1ngth*2.345e-2*trm2,
ndrb =0.283*lngth*2.345e-2*trm2;

* define length fractions terms for gauss quadrature

const double
x[] {-43.9/12.0, -39.2/12.0, -35.2/12.0, -31.2/12.0,

-27.2/12.0, -10.0/12.0, 0.0, 10.0/12.0,
26.8/12.0, 32.0/12.0, 37.8/12.0, 40.8/12.0,
42.3/12.0, 43.3/12.0, 43.7/12.01;

* define the breadth br and height hh terms

const double
hh(] = { 0.0/12.0, 2.7/12.0, 5.2/12.0, 7.6/12.0,

10.1/12.0, 10.1/12.0, 10.1/12.0, 10.1/12.0,
10.1/12.0, 9.6/12.0, 7.6/12.0, 5.6/12.0,
4.2/12.0, 2.3/12.0, 0.0 },

br(.] = { 16-5/12.0, 16.5/12.0, 16.5/12.0, 16.5/12.0,
16.5/12.0, 16.5/12.0, 16.5/12.0, 16.5/12.0,
16.5/12.0, 15.5/12.0, 12.45/12.0, 9.5/12.0,
7-0/12.0, 4.0/12.0, 0.0 }

* assemble inverted mass matrix
*this matrix was calculated previously using the above
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* coefficients and the equations of motion

const double
xmminv[6)l6] {

{6.8626e-2, 0.0, 3.8922e-5, 0.0, -2.7774e-4, 0.0 }
{0.0, 3.8558e-2, 0.0, 3.4574e-3, 0.0, -3.5748e-3 }
{3.8922e-5, 0.0, 2.0616e-2, 0.0, -8.3980e-4, 0.0 }
{0.0, 3.4574e-3, 0.0, 1.3306e-1, 0.0, -3.2055e-4 }
{-2.7774e-4, 0.0,-8.3980e-4, 0.0, 5.9927e-3, 0.0 }
{0.0,-3.5748e-3, 0.0,-3.2054e-4, 0.0, 1.8692e-2}
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% File MAKEK.M

% Function which makes the piecewise constant
% Extended Kalman filter gain matrices for various
% values of forward speed, u, and pitch angles,
% theta. Assumes that other states are zero to
% keep the number of different K matrices to a
% minimum. Returns a block row matrix of steady
% state K matrices

% Calls DLQE.M, AUV2AB.MEX,

% Called by AUVSIM7.M

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function allK = makeK(uRange,thtRange,Q,R,dt)

allK = [];

u = uRange;
theta = thtRange;

% calculate rpm range corresponding to the u range using
% known rpm to thrust relationship and drag to speed
% relationships:

%a

% thrust = drag (in steady state)
% thrust = constl*rpm^2
% drag = const2*u^2

% and
% 550 rpm gives 2.5 feet/sec

rpm = u*550/2.5;

% shell for measurement matrix C:

C=(0 0 0 1 0 0 0 0 0 0 1 0 0 0; % p
00001000000100; % = + biases,
00000100000010; % r
00000010000000; % depth
00000000000000; % depth dot
0 0 0 0 0 0 0 0 1 0 0 0 0 1; % Theta (pitch + bias
0 0 0 0 0 0 0 0 0 1 0 0 0 0];% Psi (heading gyro)

% loop through both u and theta to calculate K,
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% the Extended Kalman filter gain matrices

for ulndx = l:length(u)

input =[O;O;O;O;rpm(ulndx)];

for thlndx = l:length(theta)

% Setup the full 12 state linearized model

[a,b]=auv2ab([u(ulndx);zeros(9,l);theta(thlndx);O),input);

% delete from 'a' and 'b' elements having to do
% with X and Y to remove poles at origin to
% help stabilize
% the Extended Kalman filter
a= [a(l:6,1:6) , a(1:6,9:12);

a(9:12,1:6), a(9:12,9:12) ];
b [b(1:6,:);

b(9:12, : )];

% add gyro bias terms as constant states
% with random walk
a = [a zeros(1O,4);

zeros(4,14) J;
b = [b;zeros(4,5)];

a % disturbance input matrix
b2=sign(Q);

* % convert to discrete time
[Phi,Gam2]=c2d(a,b2,dt);

% Recalculate the depth dot row of the C matrix
% around u and theta only

C(5,1) = -sin(theta(thlndx));
C(5,3) = cos(theta(thlndx));
C(5,9) = -u(uIndx)*cos(theta(thIndx));

% calculate the Extended Kalman filter gain matrix for
% u & theta values, & append it to form a matrix made
% of gain matrices
% DLQE solves the discrete time Riccati equation
% to find the steady state Kalman filter gain for a
% given linear system
allK = [allK,real(dlqe(Phi,Gam2,C,Q,R))];

* end;
end;
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% File GETK.M

% Function which compares estimated speed and
% estimated pitch to the nominal speed and pitch
% vectors to determine which of the steady state
% Kalman filter gain matrices to use in the
% piecewise constant approximation for the Extended
% Kalman filter

% Called by AUVSIM7.M

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function K = getK(allK,u,theta,uRange,thRange)

% determine index of the nominal speed and pitch which
% is closest to the actual speed and pitch

[error,uIndx] = min(abs(u-uRange));
[error,thIndx] = min(abs(theta-thRange));

% allK was made by MAKEK.M and therefore it is
% a block row matrix of K matrices calculated over the
% the range of u values in uRange and the range of theta
% values in thRange. Theta is the most rapidly changing
% index so allK has the following format:

% allK =...

% [K(uRange(1),thRange(1)),K(uRange(l),thRange(2)),...
% K(uRange(last),thRange(last-l)),...
% K(uRange(last),thRange(last))]

% so allK has:
% (number of states in Extended Kalman filter) rows &
% (length(uRange)*length(thRange)*(number of measurements))
% columns

[m,n] = size(allK);

Kwidth = n/length(uRange)/length(thRange);

% so the proper K to use is

Indx = 1 + Kwidth*((uIndx-l)*length(thRange) + (thIndx-1));

K = allK(:,Indx:(Indx+Kwidth-1));
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% File GETMEAS5.M

% formats actual recorded measurement data for
% navigator

% Ver.4 using recorded data vice simulated data

% Ver.5 use pitch gyro directly rather than through
% simulated accelerometers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [anglerate,Z,Zdot,pitch,hdg]=getmeas5(data,Zold,dt)

% depth, Z, measurement
Z = data(4);

% time rate of change of depth
Zdot = (Z - Zold)/dt;

% rate gyro readings
anglerate(l,l)=data(8);
anglerate(2,1)=data(9);
anglerate(3,1)=data(10);

pitch = data(6);
hdg = data(7);
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% File MAKMEAS3.M

% subroutine to transform the observer states
into measurements

% Called by AUVSIM7.M

function (modieas]=makmeas3(new,old,dt)

modmeas = zeros(7,1);

modmeas(1) = new(4) + new( 13); % rate gyro
modmeas(2) = new(5) + new(14); % with bias added)
modmeas(3) = new(6) + new(15);
modmeas(4) = new(9); % depth
modmeas(5) = (new(9)-old(9fl/dt; % depth dot

modmeas(6) = new(11) + new(16);
modmeas(7) = new(12);
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